27 Commits

Author SHA1 Message Date
Geoff Bunza
5efcaaeb6b Add files via upload 2018-08-07 12:36:35 -07:00
Geoff Bunza
d1e4a2b83d Delete SMA 6.01 Release Notes.rtf 2018-08-07 12:36:14 -07:00
Geoff Bunza
3e7ac4967c Add files via upload 2018-08-07 12:32:39 -07:00
Geoff Bunza
29e90c7c9c Delete Dec_2Mot_4LED_Aud_8Ftn.ino 2018-08-07 12:31:55 -07:00
Geoff Bunza
a8d3a32d07 Delete Dec_2Mot_3LED_TrigAud.ino 2018-08-07 12:31:30 -07:00
Geoff Bunza
644fe9abff Delete Dec_2Mot_12LED_1Srv_6Ftn.ino 2018-08-07 12:31:07 -07:00
Geoff Bunza
771d2ae722 Add files via upload 2018-07-31 13:15:54 -07:00
Geoff Bunza
8184159c87 Delete SMA 6.0 Release Notes.rtf 2018-07-31 13:14:42 -07:00
Geoff Bunza
6d23aa0993 Delete Dec_Stepper_6Ftn.ino 2018-07-31 13:14:25 -07:00
Geoff Bunza
b0ac4a4f6f Delete Dec_SMA12_LED_Groups.ino 2018-07-31 13:14:08 -07:00
Geoff Bunza
3bbdad9f8f Delete Dec_Dir_and_Fade.ino 2018-07-31 13:13:57 -07:00
Geoff Bunza
c18ed5b703 Delete Dec_7Serv_10LED_6Ftn.ino 2018-07-31 13:13:45 -07:00
Geoff Bunza
37bb3f8e66 Delete Dec_2Mot_4LED_Aud_8Ftn.ino 2018-07-31 13:13:32 -07:00
Geoff Bunza
70b5530bb4 Delete Dec_2Mot_3LED_TrigAud.ino 2018-07-31 13:13:16 -07:00
Geoff Bunza
8574dda01c Delete Dec_2Mot_12LED_1Srv_6Ftn.ino 2018-07-31 13:12:52 -07:00
Geoff Bunza
90e40f8f91 Delete Dec_17LED_6Ftn.ino 2018-07-31 13:12:39 -07:00
Geoff Bunza
6ed5a97e30 Delete Dec_17LED_1Ftn.ino 2018-07-31 13:12:26 -07:00
Geoff Bunza
e0ceeafcb9 Delete Dec_15Serv_2LED_6Ftn.ino 2018-07-31 13:12:16 -07:00
Geoff Bunza
8ca2e03264 Delete Dec_13Serv_4LED_6Ftn.ino 2018-07-31 13:12:02 -07:00
Geoff Bunza
e6a9f9a825 Delete Dec_10Serv_7LED_6Ftn.ino 2018-07-31 13:11:45 -07:00
Geoff Bunza
06999ee778 Delete AccDec_7Servos_10LED_6Ftn.ino 2018-07-31 13:11:31 -07:00
Geoff Bunza
0277afd827 Delete AccDec_17LED_6Ftn.ino 2018-07-31 13:11:15 -07:00
Geoff Bunza
209256ff44 Delete AccDec_17LED_1Ftn.ino 2018-07-31 13:10:39 -07:00
Geoff Bunza
84fb903af2 Delete AccDec_15Servos_2LED_6Ftn.ino 2018-07-31 13:10:24 -07:00
Geoff Bunza
fd5246040f Delete AccDec_13Servos_4LED_6Ftn.ino 2018-07-31 13:10:10 -07:00
Geoff Bunza
e9e9684c08 Delete AccDec_10Servos_7LED_6Ftn.ino 2018-07-31 13:09:45 -07:00
Geoff Bunza
1a51b94ad3 Delete AccDec_7ServoBackandForth6Ftn.ino 2018-07-31 13:09:27 -07:00
6 changed files with 204 additions and 861 deletions

2
.gitignore vendored
View File

@@ -1,2 +0,0 @@
.development
*.zip

View File

@@ -2,21 +2,11 @@
//
// Model Railroading with Arduino - NmraDcc.cpp
//
// Copyright (c) 2008 - 2020 Alex Shepherd
// Copyright (c) 2008 - 2017 Alex Shepherd
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// This source file is subject of the GNU general public license 2,
// that is available at the world-wide-web at
// http://www.gnu.org/licenses/gpl.txt
//
//------------------------------------------------------------------------
//
@@ -35,9 +25,7 @@
// 2017-01-19 added STM32F1 support by Franz-Peter
// 2017-11-29 Ken West (kgw4449@gmail.com):
// Minor fixes to pass NMRA Baseline Conformance Tests.
// 2018-12-17 added ESP32 support by Trusty (thierry@lapajaparis.net)
// 2019-02-17 added ESP32 specific changes by Hans Tanner
// 2020-05-15 changes to pass NMRA Tests ( always search for preamble )
//
//------------------------------------------------------------------------
//
// purpose: Provide a simplified interface to decode NMRA DCC packets
@@ -46,7 +34,9 @@
//------------------------------------------------------------------------
#include "NmraDcc.h"
#include "EEPROM.h"
#ifdef __AVR_MEGA__
#include <avr/eeprom.h>
#endif
// Uncomment to print DEBUG messages
//#define DEBUG_PRINT
@@ -82,33 +72,26 @@
// DCC 1: _________XXXXXXXXX_________XXXXXXXXX_________
// |<--------146us------>|
// ^-INTx ^-INTx
// less than 146us: its a one-Bit
// less than 138us: its a one-Bit
//
//
// |<-----------------232us----------->|
// DCC 0: _________XXXXXXXXXXXXXXXXXX__________________XXXXXXXX__________
// |<--------146us------->|
// ^-INTx ^-INTx
// greater than 146us: its a zero bit
// greater than 138us: its a zero bit
//
//
//
//
//------------------------------------------------------------------------
// if this is commented out, bit synchronisation is only done after a wrong checksum
#define SYNC_ALWAYS
// if this is commented out, Zero-Bit_Stretching is not supported
// ( Bits longer than 2* MAX ONEBIT are treated as error )
#define SUPPORT_ZERO_BIT_STRETCHING
#define MAX_ONEBITFULL 146
#define MAX_PRAEAMBEL 146
#define MAX_ONEBITHALF 82
#define MIN_ONEBITFULL 82
#define MIN_ONEBITHALF 35
#define MAX_BITDIFF 24
#define MAX_BITDIFF 18
// Debug-Ports
@@ -191,22 +174,9 @@
#define MODE_TP3 pinMode( D7,OUTPUT ) ; // GPIO 13
#define SET_TP3 GPOS = (1 << D7);
#define CLR_TP3 GPOC = (1 << D7);
#define MODE_TP4 pinMode( D8,OUTPUT ) ; // GPIO 15
#define SET_TP4 GPOS = (1 << D8);
#define MODE_TP4 pinMode( D7,OUTPUT ); // GPIO 15
#define SET_TP4 GPOC = (1 << D8);
#define CLR_TP4 GPOC = (1 << D8);
#elif defined(ESP32)
#define MODE_TP1 pinMode( 33,OUTPUT ) ; // GPIO 33
#define SET_TP1 GPOS = (1 << 33);
#define CLR_TP1 GPOC = (1 << 33);
#define MODE_TP2 pinMode( 25,OUTPUT ) ; // GPIO 25
#define SET_TP2 GPOS = (1 << 25);
#define CLR_TP2 GPOC = (1 << 25);
#define MODE_TP3 pinMode( 26,OUTPUT ) ; // GPIO 26
#define SET_TP3 GPOS = (1 << 26);
#define CLR_TP3 GPOC = (1 << 26);
#define MODE_TP4 pinMode( 27,OUTPUT ) ; // GPIO 27
#define SET_TP4 GPOS = (1 << 27);
#define CLR_TP4 GPOC = (1 << 27);
//#elif defined(__AVR_ATmega128__) ||defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
@@ -232,12 +202,18 @@
#define MODE_TP2
#define SET_TP2
#define CLR_TP2
//#define MODE_TP2 DDRC |= (1<<2) // A2
//#define SET_TP2 PORTC |= (1<<2)
//#define CLR_TP2 PORTC &= ~(1<<2)
#define MODE_TP3
#define SET_TP3
#define CLR_TP3
#define MODE_TP4
#define SET_TP4
#define CLR_TP4
//#define MODE_TP4 DDRC |= (1<<4) //A4
//#define SET_TP4 PORTC |= (1<<4)
//#define CLR_TP4 PORTC &= ~(1<<4)
#endif
#ifdef DEBUG_PRINT
@@ -254,24 +230,15 @@ struct countOf_t countOf;
#if defined ( __STM32F1__ )
static ExtIntTriggerMode ISREdge;
#elif defined ( ESP32 )
static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
static byte ISRWatch; // Interrupt Handler Edge Filter
#else
static byte ISREdge; // Holder of the Next Edge we're looking for: RISING or FALLING
static byte ISRWatch; // Interrupt Handler Edge Filter
static byte ISREdge; // RISING or FALLING
#endif
byte ISRLevel; // expected Level at DCC input during ISR ( to detect glitches )
byte ISRChkMask; // Flag if Level must be checked
static word bitMax, bitMin;
typedef enum
{
WAIT_PREAMBLE = 0,
WAIT_START_BIT,
#ifndef SYNC_ALWAYS
WAIT_START_BIT_FULL,
#endif
WAIT_DATA,
WAIT_END_BIT
}
@@ -292,7 +259,6 @@ struct DccRx_t
uint8_t DataReady ;
uint8_t BitCount ;
uint8_t TempByte ;
uint8_t chkSum;
DCC_MSG PacketBuf;
DCC_MSG PacketCopy;
}
@@ -309,11 +275,8 @@ typedef struct
DCC_MSG LastMsg ;
uint8_t ExtIntNum;
uint8_t ExtIntPinNum;
volatile uint8_t *ExtIntPort; // use port and bitmask to read input at AVR in ISR
uint8_t ExtIntMask; // digitalRead is too slow on AVR
int16_t myDccAddress; // Cached value of DCC Address from CVs
uint8_t inAccDecDCCAddrNextReceivedMode;
uint8_t cv29Value;
#ifdef DCC_DEBUG
uint8_t IntCount;
uint8_t TickCount;
@@ -324,48 +287,14 @@ DCC_PROCESSOR_STATE ;
DCC_PROCESSOR_STATE DccProcState ;
#ifdef ESP32
portMUX_TYPE mux = portMUX_INITIALIZER_UNLOCKED;
void IRAM_ATTR ExternalInterruptHandler(void)
#elif defined(ESP8266)
void ICACHE_RAM_ATTR ExternalInterruptHandler(void)
#else
void ExternalInterruptHandler(void)
#endif
{
SET_TP3;
#ifdef ESP32
// switch (ISRWatch)
// {
// case RISING: if (digitalRead(DccProcState.ExtIntPinNum)) break;
// case FALLING: if (digitalRead(DccProcState.ExtIntPinNum)) return; break;
// }
// First compare the edge we're looking for to the pin state
switch (ISRWatch)
{
case CHANGE:
break;
case RISING:
if (digitalRead(DccProcState.ExtIntPinNum) != HIGH)
return;
break;
case FALLING:
if (digitalRead(DccProcState.ExtIntPinNum) != LOW)
return;
break;
}
#endif
// Bit evaluation without Timer 0 ------------------------------
uint8_t DccBitVal;
static int8_t bit1, bit2 ;
static unsigned int lastMicros = 0;
static byte halfBit, DCC_IrqRunning, preambleBitCount;
static word lastMicros;
static byte halfBit, DCC_IrqRunning;
unsigned int actMicros, bitMicros;
#ifdef ALLOW_NESTED_IRQ
if ( DCC_IrqRunning ) {
// nested DCC IRQ - obviously there are glitches
// ignore this interrupt and increment glitchcounter
@@ -376,94 +305,57 @@ void ExternalInterruptHandler(void)
SET_TP3;
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
#endif
SET_TP3;
actMicros = micros();
bitMicros = actMicros-lastMicros;
CLR_TP3; SET_TP3;
#ifdef __AVR_MEGA__
if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && (*DccProcState.ExtIntPort & DccProcState.ExtIntMask) != (ISRLevel) ) ) {
#else
if ( bitMicros < bitMin || ( DccRx.State != WAIT_START_BIT && digitalRead( DccProcState.ExtIntPinNum ) != (ISRLevel) ) ) {
#endif
// too short - my be false interrupt due to glitch or false protocol or level does not match RISING / FALLING edge -> ignore this IRQ
if ( bitMicros < bitMin ) {
// too short - my be false interrupt due to glitch or false protocol -> ignore
CLR_TP3;
SET_TP4; /*delayMicroseconds(1); */ CLR_TP4;
SET_TP4; CLR_TP4;
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
CLR_TP3; SET_TP3;
lastMicros = actMicros;
#ifndef SUPPORT_ZERO_BIT_STRETCHING
//if ( bitMicros > MAX_ZEROBITFULL ) {
if ( bitMicros > (bitMax*2) ) {
// too long - my be false protocol -> start over
DccRx.State = WAIT_PREAMBLE ;
DccRx.BitCount = 0 ;
preambleBitCount = 0;
// SET_TP2; CLR_TP2;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
#endif
// enable level-checking
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
CLR_TP3;
//CLR_TP3;
return; //>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> abort IRQ
}
CLR_TP3;
SET_TP3;
#endif
DccBitVal = ( bitMicros < bitMax );
#ifdef ALLOW_NESTED_IRQ
lastMicros = actMicros;
#ifdef debug
if(DccBitVal) {SET_TP2;} else {CLR_TP2;};
#endif
DCC_IrqRunning = true;
interrupts(); // time critical is only the micros() command,so allow nested irq's
#endif
#ifdef DCC_DEBUG
DccProcState.TickCount++;
#endif
switch( DccRx.State )
{
case WAIT_PREAMBLE:
// We don't have to do anything special - looking for a preamble condition is done always
SET_TP2;
break;
#ifndef SYNC_ALWAYS
case WAIT_START_BIT_FULL:
// wait for startbit without level checking
if ( !DccBitVal ) {
// we got the startbit
CLR_TP2;CLR_TP1;
DccRx.State = WAIT_DATA ;
if( DccBitVal )
{
SET_TP1;
DccRx.BitCount++;
if( DccRx.BitCount > 10 ) {
DccRx.State = WAIT_START_BIT ;
// While waiting for the start bit, detect halfbit lengths. We will detect the correct
// sync and detect whether we see a false (e.g. motorola) protocol
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
halfBit = 0;
bitMax = MAX_ONEBITHALF;
bitMin = MIN_ONEBITHALF;
CLR_TP1;
// initialize packet buffer
DccRx.PacketBuf.Size = 0;
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;*/
DccRx.PacketBuf.PreambleBits = preambleBitCount;
}
} else {
SET_TP1;
DccRx.BitCount = 0 ;
DccRx.chkSum = 0 ;
DccRx.TempByte = 0 ;
//SET_TP1;
CLR_TP1;
}
break;
#endif
case WAIT_START_BIT:
// we are looking for first half "0" bit after preamble
switch ( halfBit ) {
case 0:
case 0: //SET_TP1;
// check first part
if ( DccBitVal ) {
// is still 1-bit (Preamble)
@@ -471,33 +363,30 @@ void ExternalInterruptHandler(void)
bit1=bitMicros;
} else {
// was "0" half bit, maybe the startbit
SET_TP1;
halfBit = 4;
CLR_TP1;
}
break;
case 1: // previous halfbit was '1'
case 1: //SET_TP1; // previous halfbit was '1'
if ( DccBitVal ) {
// its a '1' halfBit -> we are still in the preamble
halfBit = 0;
bit2=bitMicros;
preambleBitCount++;
DccRx.BitCount++;
if( abs(bit2-bit1) > MAX_BITDIFF ) {
// the length of the 2 halfbits differ too much -> wrong protokoll
CLR_TP2;
CLR_TP3;
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
preambleBitCount = 0;
// SET_TP2; CLR_TP2;
DccRx.BitCount = 0;
SET_TP4;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
// enable level checking ( with direct port reading @ AVR )
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
#endif
SET_TP3;
CLR_TP4;
}
@@ -509,97 +398,73 @@ void ExternalInterruptHandler(void)
SET_TP3;
}
break;
case 3: // previous halfbit was '0' in second halfbit
case 3: //SET_TP1; // previous halfbit was '0' in second halfbit
if ( DccBitVal ) {
// its a '1' halfbit -> we got only a half '0' bit -> cannot be DCC
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
preambleBitCount = 0;
// SET_TP2; CLR_TP2;
DccRx.BitCount = 0;
} else {
// we got two '0' halfbits -> it's the startbit
// but sync is NOT ok, change IRQ edge.
CLR_TP2;CLR_TP1;
if ( ISREdge == RISING ) ISREdge = FALLING; else ISREdge = RISING;
DccRx.State = WAIT_DATA ;
CLR_TP1;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
DccRx.PacketBuf.Size = 0;
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;*/
DccRx.PacketBuf.PreambleBits = preambleBitCount;
DccRx.BitCount = 0 ;
DccRx.chkSum = 0 ;
DccRx.TempByte = 0 ;
//SET_TP1;
}
//SET_TP4;
DccRx.PacketBuf.PreambleBits = 0;
for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;
DccRx.PacketBuf.PreambleBits = DccRx.BitCount;
DccRx.BitCount = 0 ;
DccRx.TempByte = 0 ;
}
SET_TP4;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
#endif
// enable level-checking
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
//CLR_TP4;
CLR_TP1;
CLR_TP4;
break;
case 4: // previous (first) halfbit was 0
case 4: SET_TP1; // previous (first) halfbit was 0
// if this halfbit is 0 too, we got the startbit
if ( DccBitVal ) {
// second halfbit is 1 -> unknown protokoll
DccRx.State = WAIT_PREAMBLE;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
preambleBitCount = 0;
CLR_TP2;CLR_TP1;
DccRx.BitCount = 0;
} else {
// we got the startbit
CLR_TP2;CLR_TP1;
DccRx.State = WAIT_DATA ;
CLR_TP1;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
// initialize packet buffer
DccRx.PacketBuf.Size = 0;
/*for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;*/
DccRx.PacketBuf.PreambleBits = preambleBitCount;
DccRx.PacketBuf.PreambleBits = 0;
for(uint8_t i = 0; i< MAX_DCC_MESSAGE_LEN; i++ )
DccRx.PacketBuf.Data[i] = 0;
DccRx.PacketBuf.PreambleBits = DccRx.BitCount;
DccRx.BitCount = 0 ;
DccRx.chkSum = 0 ;
DccRx.TempByte = 0 ;
//SET_TP1;
}
//SET_TP4;
CLR_TP1;
SET_TP4;
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = ISREdge;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, ISREdge );
#endif
// enable level-checking
ISRChkMask = DccProcState.ExtIntMask;
ISRLevel = (ISREdge==RISING)? DccProcState.ExtIntMask : 0 ;
//CLR_TP4;
CLR_TP4;
break;
}
break;
case WAIT_DATA:
CLR_TP2;
DccRx.BitCount++;
DccRx.TempByte = ( DccRx.TempByte << 1 ) ;
if( DccBitVal )
@@ -618,44 +483,23 @@ void ExternalInterruptHandler(void)
{
DccRx.State = WAIT_END_BIT ;
DccRx.PacketBuf.Data[ DccRx.PacketBuf.Size++ ] = DccRx.TempByte ;
DccRx.chkSum ^= DccRx.TempByte;
}
}
break;
case WAIT_END_BIT:
SET_TP2;CLR_TP2;
DccRx.BitCount++;
if( DccBitVal ) { // End of packet?
CLR_TP3; SET_TP4;
if( DccBitVal ) // End of packet?
{
CLR_TP3;
DccRx.State = WAIT_PREAMBLE ;
DccRx.BitCount = 0 ;
bitMax = MAX_PRAEAMBEL;
bitMin = MIN_ONEBITFULL;
SET_TP1;
if ( DccRx.chkSum == 0 ) {
// Packet is valid
#ifdef ESP32
portENTER_CRITICAL_ISR(&mux);
#endif
DccRx.PacketCopy = DccRx.PacketBuf ;
DccRx.DataReady = 1 ;
#ifdef ESP32
portEXIT_CRITICAL_ISR(&mux);
#endif
// SET_TP2; CLR_TP2;
preambleBitCount = 0 ;
} else {
// Wrong checksum
CLR_TP1;
#ifdef DCC_DBGVAR
DB_PRINT("Cerr");
countOf.Err++;
#endif
SET_TP3;
}
SET_TP3; CLR_TP4;
} else { // Get next Byte
else // Get next Byte
// KGW - Abort immediately if packet is too long.
if( DccRx.PacketBuf.Size == MAX_DCC_MESSAGE_LEN ) // Packet is too long - abort
{
@@ -672,108 +516,37 @@ void ExternalInterruptHandler(void)
DccRx.TempByte = 0 ;
}
}
}
// unless we're already looking for the start bit
// we always search for a preamble ( ( 10 or more consecutive 1 bits )
// if we found it within a packet, the packet decoding is aborted because
// that much one bits cannot be valid in a packet.
if ( DccRx.State != WAIT_START_BIT ) {
if( DccBitVal )
{
preambleBitCount++;
//SET_TP2;
if( preambleBitCount > 10 ) {
CLR_TP2;
#ifndef SYNC_ALWAYS
if ( DccRx.chkSum == 0 ) {
// sync must be correct if chksum was ok, no need to check sync
DccRx.State = WAIT_START_BIT_FULL;
} else {
#endif
DccRx.State = WAIT_START_BIT ;
SET_TP2;
// While waiting for the start bit, detect halfbit lengths. We will detect the correct
// sync and detect whether we see a false (e.g. motorola) protocol
#if defined ( __STM32F1__ )
detachInterrupt( DccProcState.ExtIntNum );
#endif
#ifdef ESP32
ISRWatch = CHANGE;
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
#endif
ISRChkMask = 0; // AVR level check is always true with this settings
ISRLevel = 0; // ( there cannot be false edge IRQ's with CHANGE )
halfBit = 0;
bitMax = MAX_ONEBITHALF;
bitMin = MIN_ONEBITHALF;
//CLR_TP1;
#ifndef SYNC_ALWAYS
}
#endif
}
} else {
CLR_TP1;
preambleBitCount = 0 ;
// SET_TP2; CLR_TP2;
}
}
#ifdef ALLOW_NESTED_IRQ
DCC_IrqRunning = false;
#endif
//CLR_TP1;
CLR_TP3;
DCC_IrqRunning = false;
}
void ackCV(void)
{
if( notifyCVAck )
{
DB_PRINT("ackCV: Send Basic ACK");
notifyCVAck() ;
}
}
void ackAdvancedCV(void)
{
if( notifyAdvancedCVAck && (DccProcState.cv29Value & CV29_RAILCOM_ENABLE) )
{
DB_PRINT("ackAdvancedCV: Send RailCom ACK");
notifyAdvancedCVAck() ;
}
}
uint8_t readEEPROM( unsigned int CV )
{
uint8_t readEEPROM( unsigned int CV ) {
return EEPROM.read(CV) ;
}
void writeEEPROM( unsigned int CV, uint8_t Value )
{
void writeEEPROM( unsigned int CV, uint8_t Value ) {
EEPROM.write(CV, Value) ;
#if defined(ESP8266)
EEPROM.commit();
#endif
#if defined(ESP32)
EEPROM.commit();
#endif
}
bool readyEEPROM()
{
#if defined ARDUINO_ARCH_MEGAAVR
return bit_is_clear(NVMCTRL.STATUS,NVMCTRL_EEBUSY_bp);
#elif defined __AVR_MEGA__
bool readyEEPROM() {
#ifdef __AVR_MEGA__
return eeprom_is_ready();
#else
return true;
#endif
}
uint8_t validCV( uint16_t CV, uint8_t Writable )
{
if( notifyCVResetFactoryDefault && (CV == CV_MANUFACTURER_ID ) && Writable )
@@ -810,9 +583,6 @@ uint8_t writeCV( unsigned int CV, uint8_t Value)
{
case CV_29_CONFIG:
// copy addressmode Bit to Flags
Value = Value & ~CV29_RAILCOM_ENABLE; // Bidi (RailCom) Bit must not be enabled,
// because you cannot build a Bidi decoder with this lib.
DccProcState.cv29Value = Value;
DccProcState.Flags = ( DccProcState.Flags & ~FLAGS_CV29_BITS) | (Value & FLAGS_CV29_BITS);
// no break, because myDccAdress must also be reset
case CV_ACCESSORY_DECODER_ADDRESS_LSB: // Also same CV for CV_MULTIFUNCTION_PRIMARY_ADDRESS
@@ -841,19 +611,23 @@ uint8_t writeCV( unsigned int CV, uint8_t Value)
uint16_t getMyAddr(void)
{
uint8_t CV29Value ;
if( DccProcState.myDccAddress != -1 ) // See if we can return the cached value
return( DccProcState.myDccAddress );
if( DccProcState.cv29Value & CV29_ACCESSORY_DECODER ) // Accessory Decoder?
CV29Value = readCV( CV_29_CONFIG ) ;
if( CV29Value & CV29_ACCESSORY_DECODER ) // Accessory Decoder?
{
if( DccProcState.cv29Value & CV29_OUTPUT_ADDRESS_MODE )
if( CV29Value & CV29_OUTPUT_ADDRESS_MODE )
DccProcState.myDccAddress = ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) << 8 ) | readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB );
else
DccProcState.myDccAddress = ( ( readCV( CV_ACCESSORY_DECODER_ADDRESS_MSB ) & 0b00000111) << 6 ) | ( readCV( CV_ACCESSORY_DECODER_ADDRESS_LSB ) & 0b00111111) ;
}
else // Multi-Function Decoder?
{
if( DccProcState.cv29Value & CV29_EXT_ADDRESSING ) // Two Byte Address?
if( CV29Value & CV29_EXT_ADDRESSING ) // Two Byte Address?
DccProcState.myDccAddress = ( ( readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB ) - 192 ) << 8 ) | readCV( CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB ) ;
else
@@ -863,7 +637,7 @@ uint16_t getMyAddr(void)
return DccProcState.myDccAddress ;
}
void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void (*ackFunction)() )
void processDirectOpsOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value )
{
// is it a Byte Operation
if( Cmd & 0x04 )
@@ -873,9 +647,8 @@ void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void
{
if( validCV( CVAddr, 1 ) )
{
DB_PRINT("CV: %d Byte Write: %02X", CVAddr, Value)
if( writeCV( CVAddr, Value ) == Value )
ackFunction();
ackCV();
}
}
@@ -883,9 +656,8 @@ void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void
{
if( validCV( CVAddr, 0 ) )
{
DB_PRINT("CV: %d Byte Read: %02X", CVAddr, Value)
if( readCV( CVAddr ) == Value )
ackFunction();
ackCV();
}
}
}
@@ -898,8 +670,6 @@ void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void
uint8_t tempValue = readCV( CVAddr ) ; // Read the Current CV Value
DB_PRINT("CV: %d Current Value: %02X Bit-Wise Mode: %s Mask: %02X Value: %02X", CVAddr, tempValue, BitWrite ? "Write":"Read", BitMask, BitValue);
// Perform the Bit Write Operation
if( BitWrite )
{
@@ -912,7 +682,7 @@ void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void
tempValue &= ~BitMask ; // Turn the Bit Off
if( writeCV( CVAddr, tempValue ) == tempValue )
ackFunction() ;
ackCV() ;
}
}
@@ -924,12 +694,12 @@ void processDirectCVOperation( uint8_t Cmd, uint16_t CVAddr, uint8_t Value, void
if( BitValue )
{
if( tempValue & BitMask )
ackFunction() ;
ackCV() ;
}
else
{
if( !( tempValue & BitMask) )
ackFunction() ;
ackCV() ;
}
}
}
@@ -972,8 +742,9 @@ void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t
switch( Cmd & 0b00001110 )
{
case 0b00000000:
if( notifyDccReset && ( Cmd & 0b00000001 ) ) // Hard Reset
if( notifyDccReset)
notifyDccReset( Cmd & 0b00000001 ) ;
notifyDccReset( 1 ) ;
break ;
case 0b00000010: // Factory Test
@@ -1022,7 +793,7 @@ void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t
case 0b01100000:
//TODO should we cache this info in DCC_PROCESSOR_STATE.Flags ?
#ifdef NMRA_DCC_ENABLE_14_SPEED_STEP_MODE
speedSteps = (DccProcState.cv29Value & CV29_F0_LOCATION) ? SPEED_STEP_28 : SPEED_STEP_14 ;
speedSteps = (readCV( CV_29_CONFIG ) & CV29_F0_LOCATION) ? SPEED_STEP_28 : SPEED_STEP_14 ;
#else
speedSteps = SPEED_STEP_28 ;
#endif
@@ -1106,7 +877,7 @@ void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t
case 0b11100000: // CV Access
CVAddr = ( ( ( Cmd & 0x03 ) << 8 ) | Data1 ) + 1 ;
processDirectCVOperation( Cmd, CVAddr, Data2, ackAdvancedCV) ;
processDirectOpsOperation( Cmd, CVAddr, Data2 ) ;
break;
}
}
@@ -1121,7 +892,7 @@ void processServiceModeOperation( DCC_MSG * pDccMsg )
if( pDccMsg->Size == 3) // 3 Byte Packets are for Address Only, Register and Paged Mode
{
uint8_t RegisterAddr ;
DB_PRINT("CV Address, Register & Paged Mode Operation");
DB_PRINT("3-BytePkt");
RegisterAddr = pDccMsg->Data[0] & 0x07 ;
Value = pDccMsg->Data[1] ;
@@ -1164,11 +935,11 @@ void processServiceModeOperation( DCC_MSG * pDccMsg )
else if( pDccMsg->Size == 4) // 4 Byte Packets are for Direct Byte & Bit Mode
{
DB_PRINT("CV Direct Byte and Bit Mode Mode Operation");
DB_PRINT("BB-Mode");
CVAddr = ( ( ( pDccMsg->Data[0] & 0x03 ) << 8 ) | pDccMsg->Data[1] ) + 1 ;
Value = pDccMsg->Data[2] ;
processDirectCVOperation( pDccMsg->Data[0] & 0b00001100, CVAddr, Value, ackCV) ;
processDirectOpsOperation( pDccMsg->Data[0] & 0b00001100, CVAddr, Value ) ;
}
}
#endif
@@ -1245,13 +1016,12 @@ void execDccProcessor( DCC_MSG * pDccMsg )
{
resetServiceModeTimer( 1 ) ;
//Only check the DCC Packet "Size" and "Data" fields and ignore the "PreambleBits" as they can be different to the previous packet
if(pDccMsg->Size != DccProcState.LastMsg.Size || memcmp( pDccMsg->Data, &DccProcState.LastMsg.Data, pDccMsg->Size ) != 0 )
if( memcmp( pDccMsg, &DccProcState.LastMsg, sizeof( DCC_MSG ) ) )
{
DccProcState.DuplicateCount = 0 ;
memcpy( &DccProcState.LastMsg, pDccMsg, sizeof( DCC_MSG ) ) ;
}
// Wait until you see 2 identical packets before acting on a Service Mode Packet
// Wait until you see 2 identicle packets before acting on a Service Mode Packet
else
{
DccProcState.DuplicateCount++ ;
@@ -1507,29 +1277,11 @@ void NmraDcc::pin( uint8_t ExtIntNum, uint8_t ExtIntPinNum, uint8_t EnablePullup
#if defined ( __STM32F1__ )
// with STM32F1 the interuptnumber is equal the pin number
DccProcState.ExtIntNum = ExtIntPinNum;
// because STM32F1 has a NVIC we must set interuptpriorities
const nvic_irq_num irqNum2nvic[] = { NVIC_EXTI0, NVIC_EXTI1, NVIC_EXTI2, NVIC_EXTI3, NVIC_EXTI4,
NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5, NVIC_EXTI_9_5,
NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10, NVIC_EXTI_15_10 };
exti_num irqNum = (exti_num)(PIN_MAP[ExtIntPinNum].gpio_bit);
// DCC-Input IRQ must be able to interrupt other long low priority ( level15 ) IRQ's
nvic_irq_set_priority ( irqNum2nvic[irqNum], PRIO_DCC_IRQ);
// Systic must be able to interrupt DCC-IRQ to always get correct micros() values
nvic_irq_set_priority(NVIC_SYSTICK, PRIO_SYSTIC);
#else
DccProcState.ExtIntNum = ExtIntNum;
#endif
DccProcState.ExtIntPinNum = ExtIntPinNum;
#ifdef __AVR_MEGA__
// because digitalRead at AVR is slow, we will read the dcc input in the ISR
// by direct port access.
DccProcState.ExtIntPort = portInputRegister( digitalPinToPort(ExtIntPinNum) );
DccProcState.ExtIntMask = digitalPinToBitMask( ExtIntPinNum );
#else
DccProcState.ExtIntMask = 1;
#endif
pinMode( ExtIntPinNum, INPUT );
if( EnablePullup )
digitalWrite(ExtIntPinNum, HIGH);
@@ -1547,9 +1299,6 @@ void NmraDcc::init( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, ui
#if defined(ESP8266)
EEPROM.begin(MAXCV);
#endif
#if defined(ESP32)
EEPROM.begin(MAXCV);
#endif
// Clear all the static member variables
memset( &DccRx, 0, sizeof( DccRx) );
@@ -1557,30 +1306,20 @@ void NmraDcc::init( uint8_t ManufacturerId, uint8_t VersionId, uint8_t Flags, ui
MODE_TP2;
MODE_TP3;
MODE_TP4;
ISREdge = RISING;
bitMax = MAX_ONEBITFULL;
bitMin = MIN_ONEBITFULL;
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, RISING);
DccProcState.Flags = Flags ;
DccProcState.OpsModeAddressBaseCV = OpsModeAddressBaseCV ;
DccProcState.myDccAddress = -1;
DccProcState.inAccDecDCCAddrNextReceivedMode = 0;
ISREdge = RISING;
// level checking to detect false IRQ's fired by glitches
ISRLevel = DccProcState.ExtIntMask;
ISRChkMask = DccProcState.ExtIntMask;
#ifdef ESP32
ISRWatch = ISREdge;
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, CHANGE);
#else
attachInterrupt( DccProcState.ExtIntNum, ExternalInterruptHandler, RISING);
#endif
// Set the Bits that control Multifunction or Accessory behaviour
// and if the Accessory decoder optionally handles Output Addressing
// we need to peal off the top two bits
DccProcState.cv29Value = writeCV( CV_29_CONFIG, ( readCV( CV_29_CONFIG ) & ~FLAGS_CV29_BITS ) | (Flags & FLAGS_CV29_BITS) ) ;
writeCV( CV_29_CONFIG, ( readCV( CV_29_CONFIG ) & ~FLAGS_CV29_BITS ) | (Flags & FLAGS_CV29_BITS) ) ;
uint8_t doAutoFactoryDefault = 0;
if((Flags & FLAGS_AUTO_FACTORY_DEFAULT) && (readCV(CV_VERSION_ID) == 255) && (readCV(CV_MANUFACTURER_ID) == 255))
@@ -1679,29 +1418,30 @@ uint8_t NmraDcc::process()
if( DccRx.DataReady )
{
// We need to do this check with interrupts disabled
#ifdef ESP32
portENTER_CRITICAL(&mux);
#else
//SET_TP4;
noInterrupts();
#endif
Msg = DccRx.PacketCopy ;
DccRx.DataReady = 0 ;
#ifdef ESP32
portEXIT_CRITICAL(&mux);
#else
interrupts();
#endif
// Checking of the XOR-byte is now done in the ISR already
#ifdef DCC_DBGVAR
countOf.Tel++;
#endif
// Clear trailing bytes
for ( byte i=Msg.Size; i< MAX_DCC_MESSAGE_LEN; i++ ) Msg.Data[i] = 0;
uint8_t xorValue = 0 ;
for(uint8_t i = 0; i < DccRx.PacketCopy.Size; i++)
xorValue ^= DccRx.PacketCopy.Data[i];
if(xorValue) {
#ifdef DCC_DBGVAR
DB_PRINT("Cerr");
countOf.Err++;
#endif
return 0 ;
} else {
if( notifyDccMsg ) notifyDccMsg( &Msg );
execDccProcessor( &Msg );
}
return 1 ;
}

View File

@@ -2,21 +2,11 @@
//
// Model Railroading with Arduino - NmraDcc.h
//
// Copyright (c) 2008 - 2020 Alex Shepherd
// Copyright (c) 2008 - 2018 Alex Shepherd
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
// This source file is subject of the GNU general public license 2,
// that is available at the world-wide-web at
// http://www.gnu.org/licenses/gpl.txt
//
//------------------------------------------------------------------------
//
@@ -42,7 +32,7 @@
// Uncomment the following Line to Enable Service Mode CV Programming
#define NMRA_DCC_PROCESS_SERVICEMODE
// Uncomment the following line to Enable MultiFunction Decoder Operations
// Uncomment the following line to Enable MutliFunction Decoder Operations
#define NMRA_DCC_PROCESS_MULTIFUNCTION
// Uncomment the following line to Enable 14 Speed Step Support
@@ -54,15 +44,15 @@
#include "WProgram.h"
#endif
#include "EEPROM.h"
#ifndef NMRADCC_IS_IN
#define NMRADCC_IS_IN
#define NMRADCC_VERSION 205 // Version 2.0.5
#define NMRADCC_VERSION 200 // Version 2.0.0
#define MAX_DCC_MESSAGE_LEN 6 // including XOR-Byte
//#define ALLOW_NESTED_IRQ // uncomment to enable nested IRQ's ( only for AVR! )
typedef struct
{
uint8_t Size ;
@@ -106,18 +96,12 @@ typedef struct
#define CV_MANUFACTURER_ID 8
#define CV_29_CONFIG 29
#if defined(ESP32)
#include <esp_spi_flash.h>
#define MAXCV SPI_FLASH_SEC_SIZE
#elif defined(ESP8266)
#if defined(ESP8266)
#include <spi_flash.h>
#define MAXCV SPI_FLASH_SEC_SIZE
#elif defined( __STM32F1__)
#define MAXCV (EEPROM_PAGE_SIZE/4 - 1) // number of storage places (CV address could be larger
// because STM32 uses virtual adresses)
#undef ALLOW_NESTED_IRQ // This is done with NVIC on STM32
#define PRIO_DCC_IRQ 9
#define PRIO_SYSTIC 8 // MUST be higher priority than DCC Irq
#else
#define MAXCV E2END // the upper limit of the CV value currently defined to max memory.
#endif
@@ -126,7 +110,7 @@ typedef enum {
CV29_LOCO_DIR = 0b00000001, /** bit 0: Locomotive Direction: "0" = normal, "1" = reversed */
CV29_F0_LOCATION = 0b00000010, /** bit 1: F0 location: "0" = bit 4 in Speed and Direction instructions, "1" = bit 4 in function group one instruction */
CV29_APS = 0b00000100, /** bit 2: Alternate Power Source (APS) "0" = NMRA Digital only, "1" = Alternate power source set by CV12 */
CV29_RAILCOM_ENABLE = 0b00001000, /** bit 3: BiDi ( RailCom ) is active */
CV29_ADV_ACK = 0b00001000, /** bit 3: ACK, Advanced Acknowledge mode enabled if 1, disabled if 0 */
CV29_SPEED_TABLE_ENABLE = 0b00010000, /** bit 4: STE, Speed Table Enable, "0" = values in CVs 2, 4 and 6, "1" = Custom table selected by CV 25 */
CV29_EXT_ADDRESSING = 0b00100000, /** bit 5: "0" = one byte addressing, "1" = two byte addressing */
CV29_OUTPUT_ADDRESS_MODE = 0b01000000, /** bit 6: "0" = Decoder Address Mode "1" = Output Address Mode */
@@ -667,7 +651,7 @@ extern uint8_t notifyIsSetCVReady(void) __attribute__ ((weak));
* notifyCVChange() Called when a CV value is changed.
* This is called whenever a CV's value is changed.
* notifyDccCVChange() Called only when a CV value is changed by a Dcc packet or a internal lib function.
* it is NOT called if the CV is changed by means of the setCV() method.
* it is NOT called if the CV is chaged by means of the setCV() method.
* Note: It is not called if notifyCVWrite() is defined
* or if the value in the EEPROM is the same as the value
* in the write command.
@@ -711,17 +695,6 @@ extern void notifyCVResetFactoryDefault(void) __attribute__ ((weak));
* None
*/
extern void notifyCVAck(void) __attribute__ ((weak));
/*+
* notifyAdvancedCVAck() Called when a CV write must be acknowledged via Advanced Acknowledgement.
* This callback must send the Advanced Acknowledgement via RailComm.
*
* Inputs:
* None
* *
* Returns:
* None
*/
extern void notifyAdvancedCVAck(void) __attribute__ ((weak));
/*+
* notifyServiceMode(bool) Called when state of 'inServiceMode' changes
*

View File

@@ -1,8 +1,8 @@
// DCC Stepper Motor Controller ( A4988 ) Example for Model Railroad Turntable Control
//
// See: https://www.dccinterface.com/product/arduino-model-railway-dcc-stepper-motor-controller-a4988-assembled/
// See: https://www.dccinterface.com/how-to/assemblyguide/
//
// Author: Alex Shepherd 2020-06-01
// Author: Alex Shepherd 2017-12-04
//
// This example requires two Arduino Libraries:
//
@@ -22,18 +22,8 @@
// The lines below define the pins used to connect to the A4988 driver module
#define A4988_STEP_PIN 4
#define A4988_DIRECTION_PIN 5
#define A4988_ENABLE_PIN 6
#ifdef A4988_ENABLE_PIN
// Uncomment the next line to enable Powering-Off the Stepper when its not running to reduce heating the motor and driver
#define DISABLE_OUTPUTS_IDLE
#endif
// By default the stepper motor will move the shortest distance to the desired position.
// If you need the turntable to only move in the Positive/Increasing or Negative/Decreasing step numbers to better handle backlash in the mechanism
// Then uncomment the appropriate line below
//#define ALWAYS_MOVE_POSITIVE
//#define ALWAYS_MOVE_NEGATIVE
#define A4988_ENABLE_PIN 6
// The lines below define the stepping speed and acceleration, which you may need to tune for your application
#define STEPPER_MAX_SPEED 800 // Sets the maximum permitted speed
@@ -102,9 +92,6 @@ TurnoutPosition turnoutPositions[] = {
// --------------------------------------------------------------------------------------------
// You shouldn't need to edit anything below this line unless you're needing to make big changes... ;)
// --------------------------------------------------------------------------------------------
#if defined(ALWAYS_MOVE_POSITIVE) && defined(ALWAYS_MOVE_NEGATIVE)
#error ONLY uncomment one of ALWAYS_MOVE_POSITIVE or ALWAYS_MOVE_NEGATIVE but NOT both
#endif
#define MAX_TURNOUT_POSITIONS (sizeof(turnoutPositions) / sizeof(TurnoutPosition))
@@ -117,12 +104,11 @@ NmraDcc Dcc ;
// Variables to store the last DCC Turnout message Address and Direction
uint16_t lastAddr = 0xFFFF ;
uint8_t lastDirection = 0xFF;
int lastStep = 0;
// This function is called whenever a normal DCC Turnout Packet is received
void notifyDccAccTurnoutOutput( uint16_t Addr, uint8_t Direction, uint8_t OutputPower )
{
Serial.print(F("notifyDccAccTurnoutOutput: "));
Serial.print("notifyDccAccTurnoutOutput: ") ;
Serial.print(Addr,DEC) ;
Serial.print(',');
Serial.print(Direction,DEC) ;
@@ -145,50 +131,23 @@ void notifyDccAccTurnoutOutput( uint16_t Addr, uint8_t Direction, uint8_t Output
#ifdef A4988_ENABLE_PIN
stepper1.enableOutputs();
#endif
int newStep;
if (Direction)
newStep = turnoutPositions[i].positionFront;
else
newStep = turnoutPositions[i].positionBack;
Serial.print(newStep, DEC);
Serial.print(F(" Last Step: "));
Serial.print(lastStep, DEC);
int diffStep = newStep - lastStep;
Serial.print(F(" Diff Step: "));
Serial.print(diffStep, DEC);
#if defined ALWAYS_MOVE_POSITIVE
Serial.print(F(" Positive"));
if(diffStep < 0)
diffStep += FULL_TURN_STEPS;
#elif defined ALWAYS_MOVE_NEGATIVE
Serial.print(F(" Negative"));
if(diffStep > 0)
diffStep -= FULL_TURN_STEPS;
#else
if(diffStep > HALF_TURN_STEPS)
diffStep = diffStep - FULL_TURN_STEPS;
else if(diffStep < -HALF_TURN_STEPS)
diffStep = diffStep + FULL_TURN_STEPS;
#endif
Serial.print(F(" Move: "));
Serial.println(diffStep, DEC);
stepper1.move(diffStep);
lastStep = newStep;
{
Serial.println(turnoutPositions[i].positionFront, DEC);
stepper1.moveTo(turnoutPositions[i].positionFront);
break;
}
else
{
Serial.println(turnoutPositions[i].positionBack, DEC);
stepper1.moveTo(turnoutPositions[i].positionBack);
break;
}
}
}
};
#ifdef DISABLE_OUTPUTS_IDLE
#ifdef A4988_ENABLE_PIN
bool lastIsRunningState ;
#endif
@@ -204,10 +163,6 @@ void setupStepperDriver()
stepper1.setSpeed(STEPPER_SPEED); // Sets the desired constant speed for use with runSpeed()
#ifdef A4988_ENABLE_PIN
stepper1.enableOutputs();
#endif
#ifdef DISABLE_OUTPUTS_IDLE
lastIsRunningState = stepper1.isRunning();
#endif
}
@@ -218,19 +173,14 @@ bool moveToHomePosition()
pinMode(HOME_SENSOR_PIN, INPUT_PULLUP);
#ifdef ALWAYS_MOVE_NEGATIVE
stepper1.move(0 - (FULL_TURN_STEPS * 2));
#else
stepper1.move(FULL_TURN_STEPS * 2);
#endif
while(digitalRead(HOME_SENSOR_PIN) != HOME_SENSOR_ACTIVE_STATE)
stepper1.run();
if(digitalRead(HOME_SENSOR_PIN) == HOME_SENSOR_ACTIVE_STATE)
{
stepper1.stop();
stepper1.setCurrentPosition(0);
Serial.println(F("Found Home Position - Setting Current Position to 0"));
stepper1.setCurrentPosition(0);
return true;
}
else
@@ -260,32 +210,28 @@ void setup()
Serial.print(F("Full Rotation Steps: "));
Serial.println(FULL_TURN_STEPS);
Serial.print(F("Movement Strategy: "));
#if defined ALWAYS_MOVE_POSITIVE
Serial.println(F("Positive Direction Only"));
#elif defined ALWAYS_MOVE_NEGATIVE
Serial.println(F("Negative Direction Only"));
#else
Serial.println(F("Shortest Distance"));
#endif
for(uint8_t i = 0; i < MAX_TURNOUT_POSITIONS; i++)
{
Serial.print(F("DCC Addr: "));
Serial.print("DCC Addr: ");
Serial.print(turnoutPositions[i].dccAddress);
Serial.print(F(" Front: "));
Serial.print(" Front: ");
Serial.print(turnoutPositions[i].positionFront);
Serial.print(F(" Back: "));
Serial.print(" Back: ");
Serial.println(turnoutPositions[i].positionBack);
}
setupStepperDriver();
if(moveToHomePosition());
{
setupDCCDecoder();
#ifdef A4988_ENABLE_PIN
stepper1.enableOutputs();
#endif
// Fake a DCC Packet to cause the Turntable to move to Position 1
notifyDccAccTurnoutOutput(POSITION_01_DCC_ADDRESS, 1, 1);
}
@@ -299,7 +245,7 @@ void loop()
// Process the Stepper Library
stepper1.run();
#ifdef DISABLE_OUTPUTS_IDLE
#ifdef A4988_ENABLE_PIN
if(stepper1.isRunning() != lastIsRunningState)
{
lastIsRunningState = stepper1.isRunning();

View File

@@ -1,314 +0,0 @@
// NMRA Dcc Multifunction Motor Decoder Demo
//
// Author: Alex Shepherd 2019-03-30
//
// This example requires these Arduino Libraries:
//
// 1) The NmraDcc Library from: http://mrrwa.org/download/
//
// These libraries can be found and installed via the Arduino IDE Library Manager
//
// This is a simple demo of how to drive and motor speed and direction using PWM and a motor H-Bridge
// It uses vStart and vHigh CV values to customise the PWM values to the motor response
// It also uses the Headling Function to drive 2 LEDs for Directional Headlights
// Apart from that there's nothing fancy like Lighting Effects or a function matrix or Speed Tables - its just the basics...
//
#include <NmraDcc.h>
// Uncomment any of the lines below to enable debug messages for different parts of the code
//#define DEBUG_FUNCTIONS
//#define DEBUG_SPEED
//#define DEBUG_PWM
//#define DEBUG_DCC_ACK
//#define DEBUG_DCC_MSG
#if defined(DEBUG_FUNCTIONS) or defined(DEBUG_SPEED) or defined(DEBUG_PWM) or defined(DEBUG_DCC_ACK) or defined(DEBUG_DCC_MSG)
#define DEBUG_PRINT
#endif
// This is the default DCC Address
#define DEFAULT_DECODER_ADDRESS 3
// This section defines the Arduino UNO Pins to use
#ifdef __AVR_ATmega328P__
#define DCC_PIN 2
#define LED_PIN_FWD 5
#define LED_PIN_REV 6
#define MOTOR_DIR_PIN 12
#define MOTOR_PWM_PIN 3
// This section defines the Arduino ATTiny85 Pins to use
#elif ARDUINO_AVR_ATTINYX5
#define DCC_PIN 2
#define LED_PIN_FWD 0
#define LED_PIN_REV 1
#define MOTOR_DIR_PIN 3
#define MOTOR_PWM_PIN 4
#else
#error "Unsupported CPU, you need to add another configuration section for your CPU"
#endif
// Some global state variables
uint8_t newLedState = 0;
uint8_t lastLedState = 0;
uint8_t newDirection = 0;
uint8_t lastDirection = 0;
uint8_t newSpeed = 0;
uint8_t lastSpeed = 0;
uint8_t numSpeedSteps = SPEED_STEP_128;
uint8_t vStart;
uint8_t vHigh;
// Structure for CV Values Table
struct CVPair
{
uint16_t CV;
uint8_t Value;
};
// CV Addresses we will be using
#define CV_VSTART 2
#define CV_VHIGH 5
// Default CV Values Table
CVPair FactoryDefaultCVs [] =
{
// The CV Below defines the Short DCC Address
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, DEFAULT_DECODER_ADDRESS},
// Three Step Speed Table
{CV_VSTART, 120},
{CV_VHIGH, 255},
// These two CVs define the Long DCC Address
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, 0},
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, DEFAULT_DECODER_ADDRESS},
// ONLY uncomment 1 CV_29_CONFIG line below as approprate
// {CV_29_CONFIG, 0}, // Short Address 14 Speed Steps
{CV_29_CONFIG, CV29_F0_LOCATION}, // Short Address 28/128 Speed Steps
// {CV_29_CONFIG, CV29_EXT_ADDRESSING | CV29_F0_LOCATION}, // Long Address 28/128 Speed Steps
};
NmraDcc Dcc ;
uint8_t FactoryDefaultCVIndex = 0;
// This call-back function is called when a CV Value changes so we can update CVs we're using
void notifyCVChange( uint16_t CV, uint8_t Value)
{
switch(CV)
{
case CV_VSTART:
vStart = Value;
break;
case CV_VHIGH:
vHigh = Value;
break;
}
}
void notifyCVResetFactoryDefault()
{
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
// to flag to the loop() function that a reset to Factory Defaults needs to be done
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
};
// This call-back function is called whenever we receive a DCC Speed packet for our address
void notifyDccSpeed( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Speed, DCC_DIRECTION Dir, DCC_SPEED_STEPS SpeedSteps )
{
#ifdef DEBUG_SPEED
Serial.print("notifyDccSpeed: Addr: ");
Serial.print(Addr,DEC);
Serial.print( (AddrType == DCC_ADDR_SHORT) ? "-S" : "-L" );
Serial.print(" Speed: ");
Serial.print(Speed,DEC);
Serial.print(" Steps: ");
Serial.print(SpeedSteps,DEC);
Serial.print(" Dir: ");
Serial.println( (Dir == DCC_DIR_FWD) ? "Forward" : "Reverse" );
#endif
newDirection = Dir;
newSpeed = Speed;
numSpeedSteps = SpeedSteps;
};
// This call-back function is called whenever we receive a DCC Function packet for our address
void notifyDccFunc(uint16_t Addr, DCC_ADDR_TYPE AddrType, FN_GROUP FuncGrp, uint8_t FuncState)
{
#ifdef DEBUG_FUNCTIONS
Serial.print("notifyDccFunc: Addr: ");
Serial.print(Addr,DEC);
Serial.print( (AddrType == DCC_ADDR_SHORT) ? 'S' : 'L' );
Serial.print(" Function Group: ");
Serial.print(FuncGrp,DEC);
#endif
if(FuncGrp == FN_0_4)
{
newLedState = (FuncState & FN_BIT_00) ? 1 : 0;
#ifdef DEBUG_FUNCTIONS
Serial.print(" FN 0: ");
Serial.print(newLedState);
#endif
}
#ifdef DEBUG_FUNCTIONS
Serial.println();
#endif
}
// This call-back function is called whenever we receive a DCC Packet
#ifdef DEBUG_DCC_MSG
void notifyDccMsg( DCC_MSG * Msg)
{
Serial.print("notifyDccMsg: ") ;
for(uint8_t i = 0; i < Msg->Size; i++)
{
Serial.print(Msg->Data[i], HEX);
Serial.write(' ');
}
Serial.println();
}
#endif
// This call-back function is called by the NmraDcc library when a DCC ACK needs to be sent
// Calling this function should cause an increased 60ma current drain on the power supply for 6ms to ACK a CV Read
// So we will just turn the motor on for 8ms and then turn it off again.
void notifyCVAck(void)
{
#ifdef DEBUG_DCC_ACK
Serial.println("notifyCVAck") ;
#endif
digitalWrite(MOTOR_DIR_PIN, HIGH);
digitalWrite(MOTOR_PWM_PIN, HIGH);
delay( 8 );
digitalWrite(MOTOR_DIR_PIN, LOW);
digitalWrite(MOTOR_PWM_PIN, LOW);
}
void setup()
{
#ifdef DEBUG_PRINT
Serial.begin(115200);
Serial.println("NMRA Dcc Multifunction Motor Decoder Demo");
#endif
// Setup the Pins for the Fwd/Rev LED for Function 0 Headlight
pinMode(LED_PIN_FWD, OUTPUT);
pinMode(LED_PIN_REV, OUTPUT);
// Setup the Pins for the Motor H-Bridge Driver
pinMode(MOTOR_DIR_PIN, OUTPUT);
pinMode(MOTOR_PWM_PIN, OUTPUT);
// Setup which External Interrupt, the Pin it's associated with that we're using and enable the Pull-Up
Dcc.pin(DCC_PIN, 0);
Dcc.init( MAN_ID_DIY, 10, FLAGS_MY_ADDRESS_ONLY | FLAGS_AUTO_FACTORY_DEFAULT, 0 );
// Uncomment to force CV Reset to Factory Defaults
// notifyCVResetFactoryDefault();
// Read the current CV values for vStart and vHigh
vStart = Dcc.getCV(CV_VSTART);
vHigh = Dcc.getCV(CV_VHIGH);
}
void loop()
{
// You MUST call the NmraDcc.process() method frequently from the Arduino loop() function for correct library operation
Dcc.process();
// Handle Speed changes
if(lastSpeed != newSpeed)
{
lastSpeed = newSpeed;
// Stop if speed = 0 or 1
if(newSpeed <= 1)
digitalWrite(MOTOR_PWM_PIN, LOW);
// Calculate PWM value in the range 1..255
else
{
uint8_t vScaleFactor;
if((vHigh > 1) && (vHigh > vStart))
vScaleFactor = vHigh - vStart;
else
vScaleFactor = 255 - vStart;
uint8_t modSpeed = newSpeed - 1;
uint8_t modSteps = numSpeedSteps - 1;
uint8_t newPwm = (uint8_t) vStart + modSpeed * vScaleFactor / modSteps;
#ifdef DEBUG_PWM
Serial.print("New Speed: vStart: ");
Serial.print(vStart);
Serial.print(" vHigh: ");
Serial.print(vHigh);
Serial.print(" modSpeed: ");
Serial.print(modSpeed);
Serial.print(" vScaleFactor: ");
Serial.print(vScaleFactor);
Serial.print(" modSteps: ");
Serial.print(modSteps);
Serial.print(" newPwm: ");
Serial.println(newPwm);
#endif
analogWrite(MOTOR_PWM_PIN, newPwm);
}
}
// Handle Direction and Headlight changes
if((lastDirection != newDirection) || (lastLedState != newLedState))
{
lastDirection = newDirection;
lastLedState = newLedState;
digitalWrite(MOTOR_DIR_PIN, newDirection);
if(newLedState)
{
#ifdef DEBUG_FUNCTIONS
Serial.println("LED On");
#endif
digitalWrite(LED_PIN_FWD, newDirection ? LOW : HIGH);
digitalWrite(LED_PIN_REV, newDirection ? HIGH : LOW);
}
else
{
#ifdef DEBUG_FUNCTIONS
Serial.println("LED Off");
#endif
digitalWrite(LED_PIN_FWD, LOW);
digitalWrite(LED_PIN_REV, LOW);
}
}
// Handle resetting CVs back to Factory Defaults
if( FactoryDefaultCVIndex && Dcc.isSetCVReady())
{
FactoryDefaultCVIndex--; // Decrement first as initially it is the size of the array
Dcc.setCV( FactoryDefaultCVs[FactoryDefaultCVIndex].CV, FactoryDefaultCVs[FactoryDefaultCVIndex].Value);
}
}

View File

@@ -1,6 +1,6 @@
name=NmraDcc
version=2.0.5
author=Alex Shepherd, Wolfgang Kuffer, Geoff Bunza, Martin Pischky, Franz-Peter Müller, Sven (littleyoda), Hans Tanner
version=2.0.0
author=Alex Shepherd, Wolfgang Kuffer, Geoff Bunza, Martin Pischky, Franz-Peter Müller, Sven (littleyoda)
maintainer=Alex Shepherd <kiwi64ajs@gmail.com>
sentence=Enables NMRA DCC Communication
paragraph=This library allows you to interface to a NMRA DCC track signal and receive DCC commands. The library has been tested on AVR ATTiny84/85 & ATMega88/168/328/32u4, ESP8266 and Teensy 3.x using the INT0/1 Hardware Interrupt and micros() ONLY and no longer uses Timer0 Compare Match B, which makes it much more portable to other platforms.