Files
NmraDcc/examples/IDEC/IDEC2_3_Building2Wldrs/IDEC2_3_Building2Wldrs.ino
Geoff Bunza f5d7e9b8c3 Gbidec (#44)
* Create IDEC

* Delete IDEC

* Add files via upload

* Add files via upload
2020-11-20 12:10:19 +13:00

345 lines
12 KiB
C++

// Interactive Decoder Random Building Lighting DCC Decoder IDEC2_3_Building2Wldrs.ino
// Version 1.08 Geoff Bunza 2020
// Works with both short and long DCC Addesses
// This decoder will control Random Building Lighting
// F0=Master Function OFF = Function ON DISABLES the decoder
// Input Pin for Decoder Disable Pin 3 Active LOW
/*
F0 == Master Decoder Disable == ON
F1 == Welder 1 Disable == ON
F2 == Welder 2 Disable == ON
PRO MINI PIN ASSIGNMENT:
2 - DCC Input
3 - Input Pin for MasterDecoderDisable Active LOW
4 - LED Blue Welder1
5 - LED White Welder1
6 - LED Blue Welder2
7 - LED White Welder2
8 - LED
9 - LED
10 - LED
11 - LED
12 - LED
13 - LED
14 A0 - LED
15 A1 - LED
16 A2 - LED
17 A3 - LED
18 A4 - LED
19 A5 - LED
*/
// ******** UNLESS YOU WANT ALL CV'S RESET UPON EVERY POWER UP
// ******** AFTER THE INITIAL DECODER LOAD REMOVE THE "//" IN THE FOOLOWING LINE!!
//#define DECODER_LOADED
// ******** EMOVE THE "//" IN THE FOOLOWING LINE TO SEND DEBUGGING
// ******** INFO TO THE SERIAL MONITOR
//#define DEBUG
#include <NmraDcc.h>
#define runAfter(t) for (static unsigned long _dTimer=millis();\
(unsigned long)(millis()-_dTimer)>=(t);\
_dTimer = millis())
#define runAfterOnce(t) for (static unsigned long _dTimer=millis();\
(unsigned long)(millis()-_dTimer)*estop>=(t);\
_dTimer = millis())
#define runEvery(t) for (static typeof(t) _lasttime;\
(typeof(t))((typeof(t))millis() - _lasttime) >= (t);\
_lasttime += (t))
unsigned long estop = 1;
int building_tim_delay;
int welder1_tim_delay;
int welder2_tim_delay;
byte welder1_on = 0;
byte welder2_on = 0;
int welder1_delta;
int welder2_delta;
long delta = 0;
int tctr, tctr2, i;
int numleds = 16; // Number of Output pins to initialize
int num_active_functions = 3; // Number of Functions stating with F0
byte fpins [] = {4,5,6,7,8,9,10,11,12,13,54,55,56,57,58,59}; //These are all the Output Pins
const int MasterDecoderDisablePin = 3; // D3 Master Decoder Disable Input Pin Active LOW
const int Welder1BluePin = 4; // Blue LED simulation Welder 1
const int Welder1WhitePin = 5; // White LED simulation Welder 1
const int Welder2BluePin = 6; // Blue LED simulation Welder 2
const int Welder2WhitePin = 7; // White LED simulation Welder 2
const int FunctionPin0 = 20; // Input Master Pin Disable Active LOW {;aceholder
const int FunctionPin1 = 20; // A0 LED
const int FunctionPin2 = 20; // A1 LED
const int FunctionPin3 = 20; // A2 LED
const int FunctionPin4 = 20; //A3 LED
const int FunctionPin5 = 20; //A4 LED
const int FunctionPin6 = 20; //A5 LED
const int FunctionPin7 = 20; // Place holders ONLY
const int FunctionPin8 = 20; // Place holders ONLY
const int FunctionPin9 = 20; // Place holders ONLY
const int FunctionPin10 = 20; // Place holders ONLY
const int FunctionPin11 = 20; // Place holders ONLY
const int FunctionPin12 = 20; // Place holders ONLY
const int FunctionPin13 = 20; // Place holders ONLY
const int FunctionPin14 = 20; // Place holders ONLY
const int FunctionPin15 = 20; // Place holders ONLY
const int FunctionPin16 = 20; // Place holders ONLY
int MasterDecoderDisable = 0;
int MasterDisable_value = 0;
int Disable_welder1 = 0;
int Disable_welder2 = 0;
NmraDcc Dcc ;
DCC_MSG Packet ;
uint8_t CV_DECODER_MASTER_RESET = 120;
int t; // temp
struct QUEUE
{
int inuse;
int current_position;
int increment;
int stop_value;
int start_value;
};
QUEUE *ftn_queue = new QUEUE[3];
struct CVPair
{
uint16_t CV;
uint8_t Value;
};
#define This_Decoder_Address 24
CVPair FactoryDefaultCVs [] =
{
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, This_Decoder_Address&0x7F },
// These two CVs define the Long DCC Address
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, ((This_Decoder_Address>>8)&0x7F)+192 },
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, This_Decoder_Address&0xFF },
// ONLY uncomment 1 CV_29_CONFIG line below as approprate DEFAULT IS SHORT ADDRESS
// {CV_29_CONFIG, 0}, // Short Address 14 Speed Steps
{CV_29_CONFIG, CV29_F0_LOCATION}, // Short Address 28/128 Speed Steps
// {CV_29_CONFIG, CV29_EXT_ADDRESSING | CV29_F0_LOCATION}, // Long Address 28/128 Speed Steps
{CV_DECODER_MASTER_RESET, 0},
{30, 0}, // F0 Config 0=DISABLE On/Off,1=Disable Welder 1,2=Deisable Welder2
{31, 1}, // F1 Config 0=DISABLE On/Off,1=Disable Welder 1,2=Deisable Welder2
{32, 2}, // F2 Config 0=DISABLE On/Off,1=Disable Welder 1,2=Deisable Welder2
{50, 90}, // Master Building Time Delay 0-255 255=Slowest
{51, 127}, // Welder1 Time Constant
{52, 147}, // Welder2 Time Constant
{53, 0}, // Extra
};
uint8_t FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
void notifyCVResetFactoryDefault()
{
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
// to flag to the loop() function that a reset to Factory Defaults needs to be done
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
};
// NOTE: NO PROGRAMMING ACK IS SET UP TO MAXIMAIZE
// OUTPUT PINS FOR FUNCTIONS
void setup()
{
#ifdef DEBUG
Serial.begin(115200);
#endif
pinMode (MasterDecoderDisablePin,INPUT_PULLUP); // Master Decoder Disable Input Pin Active LOW
uint8_t cv_value;
// initialize the digital pins as outputs
for (int i=0; i < numleds; i++) {
pinMode(fpins[i], OUTPUT);
digitalWrite(fpins[i], 0); // All OUPUT pins initialized LOW
}
for (int i=0; i< numleds; i++) { //As a test turn all ON in sequence
digitalWrite(fpins[i], HIGH);
delay (60);
}
delay(400);
for (int i=0; i< numleds; i++) { //Now turn all OFF in sequence
digitalWrite(fpins[i], LOW);
delay (60);
}
// Setup which External Interrupt, the Pin it's associated with that we're using
Dcc.pin(0, 2, 0);
// Call the main DCC Init function to enable the DCC Receiver
Dcc.init( MAN_ID_DIY, 601, FLAGS_MY_ADDRESS_ONLY, 0 );
delay(800);
#if defined(DECODER_LOADED)
if ( Dcc.getCV(CV_DECODER_MASTER_RESET)== CV_DECODER_MASTER_RESET )
#endif
{
for (int j=0; j < FactoryDefaultCVIndex; j++ )
Dcc.setCV( FactoryDefaultCVs[j].CV, FactoryDefaultCVs[j].Value);
digitalWrite(fpins[10], 1);
delay (500);
digitalWrite(fpins[10], 0);
}
for ( i=0; i < num_active_functions; i++) {
cv_value = Dcc.getCV(30+i) ;
#ifdef DEBUG
Serial.print(" cv_value: ");
Serial.println(cv_value, DEC) ;
#endif
switch ( cv_value ) {
case 0: // Master Decoder Disable
MasterDecoderDisable = 0;
if (digitalRead(MasterDecoderDisablePin)==LOW) MasterDecoderDisable = 1;
break;
case 1: // F1 Disables Welder 1
Disable_welder1 = 0; // Initialized
break;
case 2: // F2 Disables Welder 2
Disable_welder2 = 0; // Initialized
break;
case 3: // NEXT FEATURE for the Future
break;
default:
break;
}
}
building_tim_delay = int(Dcc.getCV(50)) * 11 ;
welder1_tim_delay = int(Dcc.getCV(51)) * 21 ;
welder2_tim_delay = int(Dcc.getCV(52)) * 21 ;
} // end setup
// ================================================================
void loop()
{
//MUST call the NmraDcc.process() method frequently
// from the Arduino loop() function for correct library operation
Dcc.process();
delay(1);
// INPUT OVER RIDE // Check Master Input Over ride
MasterDecoderDisable = 0;
if (digitalRead(MasterDecoderDisablePin)==LOW) MasterDecoderDisable = 1;
else MasterDecoderDisable = MasterDisable_value & 1;
// Random Building Lights
runEvery(building_tim_delay) digitalWrite(fpins[random (4,numleds)], lightsw() );
// Welder1
if ((MasterDecoderDisable == 0)&&(Disable_welder1==0)) {
runEvery(welder1_tim_delay) {welder1_on = random(20,50); welder1_delta=random(23,133); }
}
runEvery(welder1_delta) digitalWrite(Welder1WhitePin,run_welder1_wsw() );
runEvery(welder1_delta) digitalWrite(Welder1BluePin,run_welder1_bsw() );
// Welder2
if ((MasterDecoderDisable == 0)&&(Disable_welder2==0)) {
runEvery(welder2_tim_delay) {welder2_on = random(25,47); welder2_delta=random(22,125); }
}
runEvery(welder2_delta) digitalWrite(Welder2WhitePin,run_welder2_wsw() );
runEvery(welder2_delta) digitalWrite(Welder2BluePin,run_welder2_bsw() );
} //end loop
boolean run_welder1_wsw() {
if ((MasterDecoderDisable == 1)||(welder1_on<=0)) return LOW; //Eventually turn all lights OFF
welder1_on--;
if (random(0,100)>48) return HIGH; //48 represents a 52% ON time
else return LOW;
} // end run_welder1_wsw
boolean run_welder1_bsw() {
if ((MasterDecoderDisable == 1)||(welder1_on<=0)) return LOW; //Eventually turn all lights OFF
welder1_on--;
if (random(0,100)>35) return HIGH; //35 represents a 65% ON time
else return LOW;
} // end run_welder1_bsw
boolean run_welder2_wsw() {
if ((MasterDecoderDisable == 1)||(welder2_on<=0)) return LOW; //Eventually turn all lights OFF
welder2_on--;
if (random(0,100)>48) return HIGH; //48 represents a 52% ON time
else return LOW;
} // end run_welder2_wsw
boolean run_welder2_bsw() {
if ((MasterDecoderDisable == 1)||(welder2_on<=0)) return LOW; //Eventually turn all lights OFF
welder2_on--;
if (random(0,100)>35) return HIGH; //35 represents a 65% ON time
else return LOW;
} // end run_welder2_bsw
boolean lightsw() {
if (MasterDecoderDisable == 1) return LOW; //Eventually turn all lights OFF
if (random(0,100)>40) return HIGH; //40 represents a 60% ON time
else return LOW;
} // end lightsw
void notifyDccFunc( uint16_t Addr, DCC_ADDR_TYPE AddrType, FN_GROUP FuncGrp, uint8_t FuncState) {
#ifdef DEBUG
Serial.print("Addr= ");
Serial.println(Addr, DEC) ;
Serial.print("FuncState= ");
Serial.println(FuncState, DEC) ;
#endif
switch(FuncGrp)
{
case FN_0_4: //Function Group 1 F0 F4 F3 F2 F1
exec_function( 0, FunctionPin0, (FuncState & FN_BIT_00)>>4 );
exec_function( 1, FunctionPin1, (FuncState & FN_BIT_01));
exec_function( 2, FunctionPin2, (FuncState & FN_BIT_02)>>1);
//exec_function( 3, FunctionPin3, (FuncState & FN_BIT_03)>>2 );
//exec_function( 4, FunctionPin4, (FuncState & FN_BIT_04)>>3 );
break;
case FN_5_8: //Function Group 1 S FFFF == 1 F8 F7 F6 F5 & == 0 F12 F11 F10 F9 F8
//exec_function( 5, FunctionPin5, (FuncState & FN_BIT_05));
//exec_function( 6, FunctionPin6, (FuncState & FN_BIT_06)>>1 );
//exec_function( 7, FunctionPin7, (FuncState & FN_BIT_07)>>2 );
//exec_function( 8, FunctionPin8, (FuncState & FN_BIT_08)>>3 );
break;
case FN_9_12:
//exec_function( 9, FunctionPin9, (FuncState & FN_BIT_09));
//exec_function( 10, FunctionPin10, (FuncState & FN_BIT_10)>>1 );
//exec_function( 11, FunctionPin11, (FuncState & FN_BIT_11)>>2 );
//exec_function( 12, FunctionPin12, (FuncState & FN_BIT_12)>>3 );
break;
case FN_13_20: //Function Group 2 FuncState == F20-F13 Function Control
//exec_function( 13, FunctionPin13, (FuncState & FN_BIT_13);
//exec_function( 14, FunctionPin14, (FuncState & FN_BIT_14)>>1;
//exec_function( 15, FunctionPin15, (FuncState & FN_BIT_15)>>2 );
//exec_function( 16, FunctionPin16, (FuncState & FN_BIT_16)>>3 );
break;
case FN_21_28:
break;
}
} // end notifyDccFunc
void exec_function (int function, int pin, int FuncState) {
#ifdef DEBUG
Serial.print("function= ");
Serial.println(function, DEC) ;
Serial.print("FuncState= ");
Serial.println(FuncState, DEC) ;
#endif
switch ( Dcc.getCV( 30+function) ) { // Config 0=On/Off,1=Blink
case 0: // Master Disable by Function 0
MasterDisable_value = byte(FuncState);
break;
case 1: // Master Disable by Function 1
Disable_welder1 = byte(FuncState);
break;
case 2: // Master Disable by Function 1
Disable_welder2 = byte(FuncState);
break;
case 3: // Next Features
break;
default:
break;
}
} // end exec_function