Files
NmraDcc/examples/NmraDccMultiFunctionMotorDecoder/NmraDccMultiFunctionMotorDecoder.ino
Alex Shepherd c3dc28479a corrected Fwd/Rev LED logic in NmraDccMultiFunctionMotorDecoder example
added conditional compilation to use the newer Dcc.pin() method that used digitalPinToInterrupt() to determine the Ext Interrupt Number based on Arduino Pin to reduce confusion
2021-08-30 14:11:54 +12:00

323 lines
8.8 KiB
C++

// NMRA Dcc Multifunction Motor Decoder Demo
//
// Author: Alex Shepherd 2019-03-30
//
// This example requires these Arduino Libraries:
//
// 1) The NmraDcc Library from: http://mrrwa.org/download/
//
// These libraries can be found and installed via the Arduino IDE Library Manager
//
// This is a simple demo of how to drive and motor speed and direction using PWM and a motor H-Bridge
// It uses vStart and vHigh CV values to customise the PWM values to the motor response
// It also uses the Headling Function to drive 2 LEDs for Directional Headlights
// Apart from that there's nothing fancy like Lighting Effects or a function matrix or Speed Tables - its just the basics...
//
#include <NmraDcc.h>
// Uncomment any of the lines below to enable debug messages for different parts of the code
//#define DEBUG_FUNCTIONS
//#define DEBUG_SPEED
//#define DEBUG_PWM
//#define DEBUG_DCC_ACK
//#define DEBUG_DCC_MSG
#if defined(DEBUG_FUNCTIONS) or defined(DEBUG_SPEED) or defined(DEBUG_PWM) or defined(DEBUG_DCC_ACK) or defined(DEBUG_DCC_MSG)
#define DEBUG_PRINT
#endif
// This is the default DCC Address
#define DEFAULT_DECODER_ADDRESS 3
// This section defines the Arduino UNO Pins to use
#ifdef __AVR_ATmega328P__
// Define the Arduino input Pin number for the DCC Signal
#define DCC_PIN 2
#define LED_PIN_FWD 5
#define LED_PIN_REV 6
#define MOTOR_DIR_PIN 12
#define MOTOR_PWM_PIN 3
// This section defines the Arduino ATTiny85 Pins to use
#elif ARDUINO_AVR_ATTINYX5
// Define the Arduino input Pin number for the DCC Signal
#define DCC_PIN 2
#define LED_PIN_FWD 0
#define LED_PIN_REV 1
#define MOTOR_DIR_PIN 3
#define MOTOR_PWM_PIN 4
#else
#error "Unsupported CPU, you need to add another configuration section for your CPU"
#endif
// Some global state variables
uint8_t newLedState = 0;
uint8_t lastLedState = 0;
uint8_t newDirection = 0;
uint8_t lastDirection = 0;
uint8_t newSpeed = 0;
uint8_t lastSpeed = 0;
uint8_t numSpeedSteps = SPEED_STEP_128;
uint8_t vStart;
uint8_t vHigh;
// Structure for CV Values Table
struct CVPair
{
uint16_t CV;
uint8_t Value;
};
// CV Addresses we will be using
#define CV_VSTART 2
#define CV_VHIGH 5
// Default CV Values Table
CVPair FactoryDefaultCVs [] =
{
// The CV Below defines the Short DCC Address
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, DEFAULT_DECODER_ADDRESS},
// Three Step Speed Table
{CV_VSTART, 120},
{CV_VHIGH, 255},
// These two CVs define the Long DCC Address
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, CALC_MULTIFUNCTION_EXTENDED_ADDRESS_MSB(DEFAULT_DECODER_ADDRESS)},
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, CALC_MULTIFUNCTION_EXTENDED_ADDRESS_LSB(DEFAULT_DECODER_ADDRESS)},
// ONLY uncomment 1 CV_29_CONFIG line below as approprate
// {CV_29_CONFIG, 0}, // Short Address 14 Speed Steps
{CV_29_CONFIG, CV29_F0_LOCATION}, // Short Address 28/128 Speed Steps
// {CV_29_CONFIG, CV29_EXT_ADDRESSING | CV29_F0_LOCATION}, // Long Address 28/128 Speed Steps
};
NmraDcc Dcc ;
uint8_t FactoryDefaultCVIndex = 0;
// This call-back function is called when a CV Value changes so we can update CVs we're using
void notifyCVChange( uint16_t CV, uint8_t Value)
{
switch(CV)
{
case CV_VSTART:
vStart = Value;
break;
case CV_VHIGH:
vHigh = Value;
break;
}
}
void notifyCVResetFactoryDefault()
{
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
// to flag to the loop() function that a reset to Factory Defaults needs to be done
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
};
// This call-back function is called whenever we receive a DCC Speed packet for our address
void notifyDccSpeed( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Speed, DCC_DIRECTION Dir, DCC_SPEED_STEPS SpeedSteps )
{
#ifdef DEBUG_SPEED
Serial.print("notifyDccSpeed: Addr: ");
Serial.print(Addr,DEC);
Serial.print( (AddrType == DCC_ADDR_SHORT) ? "-S" : "-L" );
Serial.print(" Speed: ");
Serial.print(Speed,DEC);
Serial.print(" Steps: ");
Serial.print(SpeedSteps,DEC);
Serial.print(" Dir: ");
Serial.println( (Dir == DCC_DIR_FWD) ? "Forward" : "Reverse" );
#endif
newDirection = Dir;
newSpeed = Speed;
numSpeedSteps = SpeedSteps;
};
// This call-back function is called whenever we receive a DCC Function packet for our address
void notifyDccFunc(uint16_t Addr, DCC_ADDR_TYPE AddrType, FN_GROUP FuncGrp, uint8_t FuncState)
{
#ifdef DEBUG_FUNCTIONS
Serial.print("notifyDccFunc: Addr: ");
Serial.print(Addr,DEC);
Serial.print( (AddrType == DCC_ADDR_SHORT) ? 'S' : 'L' );
Serial.print(" Function Group: ");
Serial.print(FuncGrp,DEC);
#endif
if(FuncGrp == FN_0_4)
{
newLedState = (FuncState & FN_BIT_00) ? 1 : 0;
#ifdef DEBUG_FUNCTIONS
Serial.print(" FN 0: ");
Serial.print(newLedState);
#endif
}
#ifdef DEBUG_FUNCTIONS
Serial.println();
#endif
}
// This call-back function is called whenever we receive a DCC Packet
#ifdef DEBUG_DCC_MSG
void notifyDccMsg( DCC_MSG * Msg)
{
Serial.print("notifyDccMsg: ") ;
for(uint8_t i = 0; i < Msg->Size; i++)
{
Serial.print(Msg->Data[i], HEX);
Serial.write(' ');
}
Serial.println();
}
#endif
// This call-back function is called by the NmraDcc library when a DCC ACK needs to be sent
// Calling this function should cause an increased 60ma current drain on the power supply for 6ms to ACK a CV Read
// So we will just turn the motor on for 8ms and then turn it off again.
void notifyCVAck(void)
{
#ifdef DEBUG_DCC_ACK
Serial.println("notifyCVAck") ;
#endif
digitalWrite(MOTOR_DIR_PIN, HIGH);
digitalWrite(MOTOR_PWM_PIN, HIGH);
delay( 8 );
digitalWrite(MOTOR_DIR_PIN, LOW);
digitalWrite(MOTOR_PWM_PIN, LOW);
}
void setup()
{
#ifdef DEBUG_PRINT
Serial.begin(115200);
Serial.println("NMRA Dcc Multifunction Motor Decoder Demo");
#endif
// Setup the Pins for the Fwd/Rev LED for Function 0 Headlight
pinMode(LED_PIN_FWD, OUTPUT);
pinMode(LED_PIN_REV, OUTPUT);
// Setup the Pins for the Motor H-Bridge Driver
pinMode(MOTOR_DIR_PIN, OUTPUT);
pinMode(MOTOR_PWM_PIN, OUTPUT);
// Setup which External Interrupt, the Pin it's associated with that we're using and enable the Pull-Up
// Many Arduino Cores now support the digitalPinToInterrupt() function that makes it easier to figure out the
// Interrupt Number for the Arduino Pin number, which reduces confusion.
#ifdef digitalPinToInterrupt
Dcc.pin(DCC_PIN, 0);
#else
Dcc.pin(0, DCC_PIN, 1);
#endif
Dcc.init( MAN_ID_DIY, 10, FLAGS_MY_ADDRESS_ONLY | FLAGS_AUTO_FACTORY_DEFAULT, 0 );
// Uncomment to force CV Reset to Factory Defaults
// notifyCVResetFactoryDefault();
// Read the current CV values for vStart and vHigh
vStart = Dcc.getCV(CV_VSTART);
vHigh = Dcc.getCV(CV_VHIGH);
}
void loop()
{
// You MUST call the NmraDcc.process() method frequently from the Arduino loop() function for correct library operation
Dcc.process();
// Handle Speed changes
if(lastSpeed != newSpeed)
{
lastSpeed = newSpeed;
// Stop if speed = 0 or 1
if(newSpeed <= 1)
digitalWrite(MOTOR_PWM_PIN, LOW);
// Calculate PWM value in the range 1..255
else
{
uint8_t vScaleFactor;
if((vHigh > 1) && (vHigh > vStart))
vScaleFactor = vHigh - vStart;
else
vScaleFactor = 255 - vStart;
uint8_t modSpeed = newSpeed - 1;
uint8_t modSteps = numSpeedSteps - 1;
uint8_t newPwm = (uint8_t) vStart + modSpeed * vScaleFactor / modSteps;
#ifdef DEBUG_PWM
Serial.print("New Speed: vStart: ");
Serial.print(vStart);
Serial.print(" vHigh: ");
Serial.print(vHigh);
Serial.print(" modSpeed: ");
Serial.print(modSpeed);
Serial.print(" vScaleFactor: ");
Serial.print(vScaleFactor);
Serial.print(" modSteps: ");
Serial.print(modSteps);
Serial.print(" newPwm: ");
Serial.println(newPwm);
#endif
analogWrite(MOTOR_PWM_PIN, newPwm);
}
}
// Handle Direction and Headlight changes
if((lastDirection != newDirection) || (lastLedState != newLedState))
{
lastDirection = newDirection;
lastLedState = newLedState;
digitalWrite(MOTOR_DIR_PIN, newDirection);
if(newLedState)
{
#ifdef DEBUG_FUNCTIONS
Serial.println("LED On");
#endif
digitalWrite(LED_PIN_FWD, newDirection ? HIGH : LOW);
digitalWrite(LED_PIN_REV, newDirection ? LOW : HIGH);
}
else
{
#ifdef DEBUG_FUNCTIONS
Serial.println("LED Off");
#endif
digitalWrite(LED_PIN_FWD, LOW);
digitalWrite(LED_PIN_REV, LOW);
}
}
// Handle resetting CVs back to Factory Defaults
if( FactoryDefaultCVIndex && Dcc.isSetCVReady())
{
FactoryDefaultCVIndex--; // Decrement first as initially it is the size of the array
Dcc.setCV( FactoryDefaultCVs[FactoryDefaultCVIndex].CV, FactoryDefaultCVs[FactoryDefaultCVIndex].Value);
}
}