Files
NmraDcc/examples/Decoder_17LED_4Function/Decoder_17LED_4Function.ino
2015-05-12 18:46:14 +12:00

546 lines
21 KiB
C++
Executable File

// Production 17 Function DCC Decoder
// Version 3.0 Geoff Bunza 2014
// Uses modified software servo Lib
//
// ******** UNLESS YOU WANT ALL CV'S RESET UPON EVERY POWER UP
// ******** AFTER THE INITIAL DECODER LOAD REMOVE THE "//" IN THE FOOLOWING LINE!!
//#define DECODER_LOADED
#include <NmraDcc.h>
#include <SoftwareServo.h>
SoftwareServo servo0;
SoftwareServo servo1;
SoftwareServo servo2;
SoftwareServo servo3;
SoftwareServo servo4;
SoftwareServo servo5;
SoftwareServo servo6;
SoftwareServo servo7;
SoftwareServo servo8;
SoftwareServo servo9;
SoftwareServo servo10;
SoftwareServo servo11;
SoftwareServo servo12;
SoftwareServo servo13;
SoftwareServo servo14;
SoftwareServo servo15;
SoftwareServo servo16;
#define servo_start_delay 50
#define servo_init_delay 7
int tim_delay = 500;
int numfpins = 17;
byte fpins [] = {3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
const int FunctionPin0 = 3;
const int FunctionPin1 = 4;
const int FunctionPin2 = 5;
const int FunctionPin3 = 6;
const int FunctionPin4 = 7;
const int FunctionPin5 = 8;
const int FunctionPin6 = 9;
const int FunctionPin7 = 10;
const int FunctionPin8 = 11;
const int FunctionPin9 = 12;
const int FunctionPin10 = 13;
const int FunctionPin11 = 14; //A0
const int FunctionPin12 = 15; //A1
const int FunctionPin13 = 16; //A2
const int FunctionPin14 = 17; //A3 & LOAD ACK
const int FunctionPin15 = 18; //A4
const int FunctionPin16 = 19; //A5
NmraDcc Dcc ;
DCC_MSG Packet ;
uint8_t CV_DECODER_MASTER_RESET = 120;
int t; // temp
#define This_Decoder_Address 24
struct QUEUE
{
int inuse;
int current_position;
int increment;
int stop_value;
int start_value;
};
QUEUE *ftn_queue = new QUEUE[16];
extern uint8_t Decoder_Address = This_Decoder_Address;
struct CVPair
{
uint16_t CV;
uint8_t Value;
};
CVPair FactoryDefaultCVs [] =
{
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, This_Decoder_Address},
{CV_ACCESSORY_DECODER_ADDRESS_MSB, 0},
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, 0},
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, 0},
{CV_DECODER_MASTER_RESET, 0},
{30, 0}, //F0 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{31, 1}, //F0 Rate Blink=Eate,PWM=Rate,Servo=Rate
{32, 28}, //F0 Start Position F0=0
{33, 140}, //F0 End Position F0=1
{34, 28}, //F0 Current Position
{35, 0}, //F1 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{36, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{37, 28}, // Start Position Fx=0
{38, 140}, // End Position Fx=1
{39, 28}, // Current Position
{40, 0}, //F2 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{41, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{42, 28}, // Start Position Fx=0
{43, 140}, // End Position Fx=1
{44, 28}, // Current Position
{45, 0}, //F3 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{46, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{47, 28}, // Start Position Fx=0
{48, 140}, // End Position Fx=1
{49, 28}, // Current Position
{50, 0}, //F4 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{51, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{52, 28}, // Start Position Fx=0
{53, 140}, // End Position Fx=1
{54, 28}, // Current Position
{55, 0}, //F5 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{56, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{57, 28}, // Start Position Fx=0
{58, 140}, // End Position Fx=1
{59, 28}, // Current Position
{60, 0}, //F6 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{61, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{62, 28}, // Start Position Fx=0
{63, 140}, // End Position Fx=1
{64, 28}, // Current Position
{65, 0}, //F7 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{66, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{67, 1}, // Start Position Fx=0
{68,35}, // End Position Fx=1
{69, 1}, // Current Position
{70, 0}, //F8 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{71, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{72, 1}, // Start Position Fx=0
{73, 100}, // End Position Fx=1
{74, 1}, // Current Position
{75, 0}, //F9 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{76, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{77, 1}, // Start Position Fx=0
{78, 10}, // End Position Fx=1
{79, 1}, // Current Position
{80, 0}, //F10 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{81, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{82, 1}, // Start Position Fx=0
{83, 5}, // End Position Fx=1
{84, 1}, // Current Position
{85, 0}, //F11 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{86, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{87, 1}, // Start Position Fx=0
{88, 5}, // End Position Fx=1
{89, 1}, // Current Position
{90, 0}, //F12 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{91, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{92, 1}, // Start Position Fx=0
{93, 20}, // End Position Fx=1
{94, 1}, // Current Position
{95, 0}, //F13 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{96, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{97, 1}, // Start Position Fx=0
{98, 35}, // End Position Fx=1
{99, 2}, // Current Position
{100, 0}, //F14 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{101, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{102, 1}, // Start Position Fx=0
{103, 4}, // End Position Fx=1
{104, 1}, // Current Position
{105, 0}, //F15 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{106, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{107, 1}, // Start Position Fx=0
{108, 60}, // End Position Fx=1
{109, 20}, // Current Position
{110, 0}, //F16 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{111, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{112, 1}, // Start Position Fx=0
{113, 4}, // End Position Fx=1
{114, 1}, // Current Position
//FUTURE USE
{115, 0}, //F17 Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
{116, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{117, 28}, // Start Position Fx=0
{118, 50}, // End Position Fx=1
{119, 28}, // Current Position
};
uint8_t FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
void notifyCVResetFactoryDefault()
{
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
// to flag to the loop() function that a reset to Factory Defaults needs to be done
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
};
void setup() //******************************************************
{
int i;
uint8_t cv_value;
//Serial.begin(115200);
// initialize the digital pins as outputs
for (int i=0; i < numfpins; i++) {
pinMode(fpins[i], OUTPUT);
digitalWrite(fpins[i], 0);
}
for (int i=0; i < numfpins; i++) {
digitalWrite(fpins[i], 1);
delay (tim_delay/10);
}
delay( tim_delay);
for (int i=0; i < numfpins; i++) {
digitalWrite(fpins[i], 0);
delay (tim_delay/10);
}
delay( tim_delay);
// Setup which External Interrupt, the Pin it's associated with that we're using
Dcc.pin(0, 2, 0);
// Call the main DCC Init function to enable the DCC Receiver
Dcc.init( MAN_ID_DIY, 100, FLAGS_MY_ADDRESS_ONLY, 0 );
delay(800);
#if defined(DECODER_LOADED)
if ( Dcc.getCV(CV_DECODER_MASTER_RESET)== CV_DECODER_MASTER_RESET )
#endif
{
for (int j=0; j < FactoryDefaultCVIndex; j++ )
Dcc.setCV( FactoryDefaultCVs[j].CV, FactoryDefaultCVs[j].Value);
digitalWrite(fpins[14], 1);
delay (1000);
digitalWrite(fpins[14], 0);
}
for ( i=0; i < numfpins; i++) {
cv_value = Dcc.getCV( 30+(i*5)) ;
//Serial.print(" cv_value: ");
//Serial.println(cv_value, DEC) ;
switch ( cv_value ) {
case 0: // LED on/off
ftn_queue[i].inuse = 0;
break;
case 1: // LED Blink
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) ;
}
break;
case 2: //servo
{ ftn_queue[i].current_position =int (Dcc.getCV( 34+(i*5)));
ftn_queue[i].stop_value = int (Dcc.getCV( 33+(i*5)));
ftn_queue[i].start_value = int (Dcc.getCV( 32+(i*5)));
ftn_queue[i].increment = -int (char (Dcc.getCV( 31+(i*5))));
switch ( i ) {
case 0: servo0.attach(FunctionPin0); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo0.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 1: servo1.attach(FunctionPin1); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo1.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 2: servo2.attach(FunctionPin2); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo2.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 3: servo3.attach(FunctionPin3); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo3.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 4: servo4.attach(FunctionPin4); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo4.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 5: servo5.attach(FunctionPin5); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo5.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 6: servo6.attach(FunctionPin6); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo6.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 7: servo7.attach(FunctionPin7); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo7.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 8: servo8.attach(FunctionPin8); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo8.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 9: servo9.attach(FunctionPin9); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo9.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 10: servo10.attach(FunctionPin10); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo10.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 11: servo11.attach(FunctionPin11); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo11.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 12: servo12.attach(FunctionPin12); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo12.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 13: servo13.attach(FunctionPin13); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo13.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 14: servo14.attach(FunctionPin14); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo14.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 15: servo15.attach(FunctionPin15); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo15.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
case 16: servo16.attach(FunctionPin16); // attaches servo on pin to the servo object
ftn_queue[i].inuse = 1;
servo16.write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++) {SoftwareServo::refresh();delay(servo_init_delay);}
break;
default:
break;
}
}
break;
case 3: // DOUBLE ALTERNATING LED Blink
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = Dcc.getCV( 31+(i*5));
digitalWrite(fpins[i], 0);
digitalWrite(fpins[i+1], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
break;
case 4: // NEXT FEATURE to pin
break;
default:
break;
}
}
}
void loop() //**********************************************************************
{
//MUST call the NmraDcc.process() method frequently
// from the Arduino loop() function for correct library operation
Dcc.process();
SoftwareServo::refresh();
delay(8);
for (int i=0; i < numfpins; i++) {
if (ftn_queue[i].inuse==1) {
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
switch (Dcc.getCV( 30+(i*5))) {
case 0:
break;
case 1:
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
digitalWrite(fpins[i], ftn_queue[i].start_value);
ftn_queue[i].current_position = 0;
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
break;
case 2:
{
if (ftn_queue[i].increment > 0) {
if (ftn_queue[i].current_position > ftn_queue[i].stop_value)
ftn_queue[i].current_position = ftn_queue[i].stop_value;
}
if (ftn_queue[i].increment < 0) {
if (ftn_queue[i].current_position < ftn_queue[i].start_value)
ftn_queue[i].current_position = ftn_queue[i].start_value;
}
set_servo(i, ftn_queue[i].current_position);
}
break;
case 3:
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
digitalWrite(fpins[i], ftn_queue[i].start_value);
digitalWrite(fpins[i]+1, ~ftn_queue[i].start_value);
ftn_queue[i].current_position = 0;
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
i++;
break;
case 4: //FUTURE FUNCTION
break;
default:
break;
}
}
}
}
extern void notifyDccFunc( uint16_t Addr, FN_GROUP FuncGrp, uint8_t FuncState) {
switch(FuncGrp)
{
case FN_0_4: //Function Group 1 F0 F4 F3 F2 F1
exec_function( 0, FunctionPin0, (FuncState & FN_BIT_00)>>4 );
exec_function( 1, FunctionPin1, (FuncState & FN_BIT_01));
exec_function( 2, FunctionPin2, (FuncState & FN_BIT_02)>>1);
exec_function( 3, FunctionPin3, (FuncState & FN_BIT_03)>>2 );
exec_function( 4, FunctionPin4, (FuncState & FN_BIT_04)>>3 );
break;
case FN_5_8: //Function Group 1 S FFFF == 1 F8 F7 F6 F5 & == 0 F12 F11 F10 F9 F8
exec_function( 5, FunctionPin5, (FuncState & FN_BIT_05));
exec_function( 6, FunctionPin6, (FuncState & FN_BIT_06)>>1 );
exec_function( 7, FunctionPin7, (FuncState & FN_BIT_07)>>2 );
exec_function( 8, FunctionPin8, (FuncState & FN_BIT_08)>>3 );
break;
case FN_9_12:
exec_function( 9, FunctionPin9, (FuncState & FN_BIT_09));
exec_function( 10, FunctionPin10, (FuncState & FN_BIT_10)>>1 );
exec_function( 11, FunctionPin11, (FuncState & FN_BIT_11)>>2 );
exec_function( 12, FunctionPin12, (FuncState & FN_BIT_12)>>3 );
break;
case FN_13_20: //Function Group 2 FuncState == F20-F13 Function Control
exec_function( 13, FunctionPin13, (FuncState & FN_BIT_13));
exec_function( 14, FunctionPin14, (FuncState & FN_BIT_14)>>1 );
exec_function( 15, FunctionPin15, (FuncState & FN_BIT_15)>>2 );
exec_function( 16, FunctionPin16, (FuncState & FN_BIT_16)>>3 );
break;
case FN_21_28:
break;
}
}
void exec_function (int function, int pin, int FuncState) {
switch ( Dcc.getCV( 30+(function*5)) ) { // Config 0=On/Off,1=Blink,2=Servo,3=Double LED Blink
case 0: // On - Off LED
//Serial.println("****************cv:0 ") ;
digitalWrite (pin, FuncState);
ftn_queue[function].inuse = 0;
break;
case 1: // Blinking LED
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
ftn_queue[function].start_value = 0;
digitalWrite(pin, 0);
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
} else {
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
ftn_queue[function].inuse = 0;
digitalWrite(pin, 0);
}
}
break;
case 2: // Servo
ftn_queue[function].inuse = 1;
if (FuncState==1) ftn_queue[function].increment = char ( Dcc.getCV( 31+(function*5)));
else ftn_queue[function].increment = - char(Dcc.getCV( 31+(function*5)));
if (FuncState==1) ftn_queue[function].stop_value = Dcc.getCV( 33+(function*5));
else ftn_queue[function].stop_value = Dcc.getCV( 32+(function*5));
/*
Serial.print("servo inc: ") ;
Serial.print(ftn_queue[function].increment,DEC) ;
Serial.print("servo inuse: ") ;
Serial.print(ftn_queue[function].inuse,DEC) ;
Serial.print("servo num: ") ;
Serial.print(function,DEC) ;
Serial.print(" stop: ");
Serial.println(ftn_queue[function].stop_value,DEC) ;
*/
break;
case 3: // Blinking LED PAIR
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
ftn_queue[function].start_value = 0;
digitalWrite(fpins[function], 0);
digitalWrite(fpins[function+1], 1);
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
} else {
if (FuncState==0) {
ftn_queue[function].inuse = 0;
digitalWrite(fpins[function], 0);
digitalWrite(fpins[function+1], 0);
}
}
break;
case 4: // Future Function
ftn_queue[function].inuse = 0;
break;
default:
ftn_queue[function].inuse = 0;
break;
}
}
void set_servo (int servo_num, int servo_pos) {
switch (servo_num) {
case 0: servo0.write(servo_pos);
break;
case 1: servo1.write(servo_pos);
break;
case 2: servo2.write(servo_pos);
break;
case 3: servo3.write(servo_pos);
break;
case 4: servo4.write(servo_pos);
break;
case 5: servo5.write(servo_pos);
break;
case 6: servo6.write(servo_pos);
break;
case 7: servo7.write(servo_pos);
break;
case 8: servo8.write(servo_pos);
break;
case 9: servo9.write(servo_pos);
break;
case 10: servo10.write(servo_pos);
break;
case 11: servo11.write(servo_pos);
break;
case 12: servo12.write(servo_pos);
break;
case 13: servo13.write(servo_pos);
break;
case 14: servo14.write(servo_pos);
break;
case 15: servo15.write(servo_pos);
break;
case 16: servo16.write(servo_pos);
break;
default:
break;
}
}