Files
NmraDcc/examples/SMA/Dec_17LED_6Ftn/Dec_17LED_6Ftn.ino
Geoff Bunza 6dca23bc27 Gbsma601 (#20)
* Delete AccDec_7ServoBackandForth6Ftn.ino

* Delete AccDec_10Servos_7LED_6Ftn.ino

* Delete AccDec_13Servos_4LED_6Ftn.ino

* Delete AccDec_15Servos_2LED_6Ftn.ino

* Delete AccDec_17LED_1Ftn.ino

* Delete AccDec_17LED_6Ftn.ino

* Delete AccDec_7Servos_10LED_6Ftn.ino

* Delete Dec_10Serv_7LED_6Ftn.ino

* Delete Dec_13Serv_4LED_6Ftn.ino

* Delete Dec_15Serv_2LED_6Ftn.ino

* Delete Dec_17LED_1Ftn.ino

* Delete Dec_17LED_6Ftn.ino

* Delete Dec_2Mot_12LED_1Srv_6Ftn.ino

* Delete Dec_2Mot_3LED_TrigAud.ino

* Delete Dec_2Mot_4LED_Aud_8Ftn.ino

* Delete Dec_7Serv_10LED_6Ftn.ino

* Delete Dec_Dir_and_Fade.ino

* Delete Dec_SMA12_LED_Groups.ino

* Delete Dec_Stepper_6Ftn.ino

* Delete SMA 6.0 Release Notes.rtf

* Add files via upload

* Delete Dec_2Mot_12LED_1Srv_6Ftn.ino

* Delete Dec_2Mot_3LED_TrigAud.ino

* Delete Dec_2Mot_4LED_Aud_8Ftn.ino

* Add files via upload

* Delete SMA 6.01 Release Notes.rtf

* Add files via upload
2018-08-08 09:55:33 +12:00

503 lines
18 KiB
C++

// Production 17 Function DCC Decoder Dec_17LED_6Ftn.ino
// Version 6.01 Geoff Bunza 2014,2015,2016,2017,2018
// Now works with both short and long DCC Addesses
// NO LONGER REQUIRES modified software servo Lib
// Software restructuring mods added from Alex Shepherd and Franz-Peter
// With sincere thanks
// ******** UNLESS YOU WANT ALL CV'S RESET UPON EVERY POWER UP
// ******** AFTER THE INITIAL DECODER LOAD REMOVE THE "//" IN THE FOOLOWING LINE!!
//#define DECODER_LOADED
// ******** EMOVE THE "//" IN THE FOOLOWING LINE TO SEND DEBUGGING
// ******** INFO TO THE SERIAL MONITOR
#define DEBUG
#include <NmraDcc.h>
#include <SoftwareServo.h>
SoftwareServo servo[17];
#define servo_start_delay 50
#define servo_init_delay 7
#define servo_slowdown 12 //servo loop counter limit
int servo_slow_counter = 0; //servo loop counter to slowdown servo transit
int tim_delay = 500;
int numfpins = 17;
byte fpins [] = {3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
const int FunctionPin0 = 3;
const int FunctionPin1 = 4;
const int FunctionPin2 = 5;
const int FunctionPin3 = 6;
const int FunctionPin4 = 7;
const int FunctionPin5 = 8;
const int FunctionPin6 = 9;
const int FunctionPin7 = 10;
const int FunctionPin8 = 11;
const int FunctionPin9 = 12;
const int FunctionPin10 = 13;
const int FunctionPin11 = 14; //A0
const int FunctionPin12 = 15; //A1
const int FunctionPin13 = 16; //A2
const int FunctionPin14 = 17; //A3 & LOAD ACK
const int FunctionPin15 = 18; //A4
const int FunctionPin16 = 19; //A5
NmraDcc Dcc ;
DCC_MSG Packet ;
uint8_t CV_DECODER_MASTER_RESET = 120;
int t; // temp
struct QUEUE
{
int inuse;
int current_position;
int increment;
int stop_value;
int start_value;
};
QUEUE *ftn_queue = new QUEUE[16];
struct CVPair
{
uint16_t CV;
uint8_t Value;
};
#define This_Decoder_Address 24
CVPair FactoryDefaultCVs [] =
{
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, This_Decoder_Address},
// These two CVs define the Long DCC Address
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, ((This_Decoder_Address>>8)&0x7F)+192 },
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, This_Decoder_Address&0xFF },
// ONLY uncomment 1 CV_29_CONFIG line below as approprate DEFAULT IS SHORT ADDRESS
// {CV_29_CONFIG, 0}, // Short Address 14 Speed Steps
{CV_29_CONFIG, CV29_F0_LOCATION}, // Short Address 28/128 Speed Steps
// {CV_29_CONFIG, CV29_EXT_ADDRESSING | CV29_F0_LOCATION}, // Long Address 28/128 Speed Steps
{CV_DECODER_MASTER_RESET, 0},
{30, 5}, //F0 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{31, 1}, //F0 Rate Blink=Eate,PWM=Rate,Servo=Rate
{32, 0}, //F0 Start Position F0=0
{33, 8}, //F0 End Position F0=1
{34, 1}, //F0 Current Position
{35, 5}, //F1 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{36, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{37, 0}, // Start Position Fx=0
{38, 8}, // End Position Fx=1
{39, 1}, // Current Position
{40, 4}, //F2 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{41, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{42, 28}, // Start Position Fx=0
{43, 140}, // End Position Fx=1
{44, 0}, // Current Position
{45, 4}, //F3 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{46, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{47, 28}, // Start Position Fx=0
{48, 140}, // End Position Fx=1
{49, 0}, // Current Position
{50, 4}, //F4 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{51, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{52, 28}, // Start Position Fx=0
{53, 140}, // End Position Fx=1
{54, 0}, // Current Position
{55, 0}, //F5 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{56, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{57, 28}, // Start Position Fx=0
{58, 140}, // End Position Fx=1
{59, 28}, // Current Position
{60, 0}, //F6 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{61, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{62, 28}, // Start Position Fx=0
{63, 140}, // End Position Fx=1
{64, 28}, // Current Position
{65, 0}, //F7 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{66, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{67, 28}, // Start Position Fx=0
{68,140}, // End Position Fx=1
{69, 28}, // Current Position
{70, 0}, //F8 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{71, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{72, 28}, // Start Position Fx=0
{73, 140}, // End Position Fx=1
{74, 28}, // Current Position
{75, 0}, //F9 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{76, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{77, 28}, // Start Position Fx=0
{78, 140}, // End Position Fx=1
{79, 28}, // Current Position
{80, 0}, //F10 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{81, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{82, 1}, // Start Position Fx=0
{83, 5}, // End Position Fx=1
{84, 1}, // Current Position
{85, 1}, //F11 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{86, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{87, 1}, // Start Position Fx=0
{88, 50}, // End Position Fx=1
{89, 1}, // Current Position
{90, 1}, //F12 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{91, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{92, 1}, // Start Position Fx=0
{93, 100}, // End Position Fx=1
{94, 1}, // Current Position
{95, 3}, //F13 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{96, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{97, 1}, // Start Position Fx=0
{98, 200}, // End Position Fx=1
{99, 2}, // Current Position
{100, 0}, //F14 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{101, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{102, 1}, // Start Position Fx=0
{103, 200}, // End Position Fx=1
{104, 1}, // Current Position
{105, 3}, //F15 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{106, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{107, 1}, // Start Position Fx=0
{108, 60}, // End Position Fx=1
{109, 1}, // Current Position
{110, 0}, //F16 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{111, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{112, 1}, // Start Position Fx=0
{113, 4}, // End Position Fx=1
{114, 1}, // Current Position
//FUTURE USE
{115, 0}, //F17 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{116, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{117, 28}, // Start Position Fx=0
{118, 50}, // End Position Fx=1
{119, 28}, // Current Position
};
uint8_t FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
void notifyCVResetFactoryDefault()
{
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
// to flag to the loop() function that a reset to Factory Defaults needs to be done
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
};
// NOTE: NO PROGRAMMING ACK IS SET UP TO MAXIMAIZE
// OUTPUT PINS FOR FUNCTIONS
void setup() //******************************************************
{
#ifdef DEBUG
Serial.begin(115200);
#endif
int i;
uint8_t cv_value;
// initialize the digital pins as outputs
for (int i=0; i < numfpins; i++) {
pinMode(fpins[i], OUTPUT);
digitalWrite(fpins[i], 0);
}
for (int i=0; i < numfpins; i++) {
digitalWrite(fpins[i], 1);
delay (tim_delay/10);
}
delay( tim_delay);
for (int i=0; i < numfpins; i++) {
digitalWrite(fpins[i], 0);
delay (tim_delay/10);
}
delay( tim_delay);
// Setup which External Interrupt, the Pin it's associated with that we're using
Dcc.pin(0, 2, 0);
// Call the main DCC Init function to enable the DCC Receiver
Dcc.init( MAN_ID_DIY, 601, FLAGS_MY_ADDRESS_ONLY, 0 );
delay(800);
#if defined(DECODER_LOADED)
if ( Dcc.getCV(CV_DECODER_MASTER_RESET)== CV_DECODER_MASTER_RESET )
#endif
{
for (int j=0; j < FactoryDefaultCVIndex; j++ )
Dcc.setCV( FactoryDefaultCVs[j].CV, FactoryDefaultCVs[j].Value);
digitalWrite(fpins[14], 1);
delay (1000);
digitalWrite(fpins[14], 0);
}
for ( i=0; i < numfpins; i++) {
cv_value = Dcc.getCV( 30+(i*5)) ;
#ifdef DEBUG
Serial.print(" cv_value: ");
Serial.println(cv_value, DEC) ;
#endif
switch ( cv_value ) {
case 0: // LED on/off
ftn_queue[i].inuse = 0;
break;
case 1: // LED Blink
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) ;
}
break;
case 2: //servo
{
ftn_queue[i].current_position =int (Dcc.getCV( 34+(i*5)));
ftn_queue[i].stop_value = int (Dcc.getCV( 33+(i*5)));
ftn_queue[i].start_value = int (Dcc.getCV( 32+(i*5)));
ftn_queue[i].increment = -int (char (Dcc.getCV( 31+(i*5))));
// attaches servo on pin to the servo object
servo[i].attach(fpins[i]);
#ifdef DEBUG
Serial.print("InitServo ID= ");
Serial.println(i, DEC) ;
#endif
servo[i].write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++)
{SoftwareServo::refresh();delay(servo_init_delay);}
ftn_queue[i].inuse = 0;
servo[i].detach();
}
break;
case 3: // DOUBLE ALTERNATING LED Blink
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = Dcc.getCV( 31+(i*5));
digitalWrite(fpins[i], 0);
digitalWrite(fpins[i+1], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
break;
case 4: // Simple Pulsed Output based on saved Rate =10*Rate in Milliseconds
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].increment = 10 * int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
}
break;
case 5: // Fade On
{
ftn_queue[i].inuse = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) *10.;
}
break;
case 6: // NEXT FEATURE to pin
break;
default:
break;
}
}
}
void loop() //**********************************************************************
{
//MUST call the NmraDcc.process() method frequently
// from the Arduino loop() function for correct library operation
Dcc.process();
SoftwareServo::refresh();
delay(3);
for (int i=0; i < numfpins; i++) {
if (ftn_queue[i].inuse==1) {
switch (Dcc.getCV( 30+(i*5))) {
case 0:
break;
case 1:
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
digitalWrite(fpins[i], ftn_queue[i].start_value);
ftn_queue[i].current_position = 0;
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
break;
case 2:
{
if (servo_slow_counter++ > servo_slowdown)
{
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
if (ftn_queue[i].increment > 0) {
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].current_position = ftn_queue[i].stop_value;
ftn_queue[i].inuse = 0;
servo[i].detach();
}
}
if (ftn_queue[i].increment < 0) {
if (ftn_queue[i].current_position < ftn_queue[i].start_value) {
ftn_queue[i].current_position = ftn_queue[i].start_value;
ftn_queue[i].inuse = 0;
servo[i].detach();
}
}
servo[i].write(ftn_queue[i].current_position);
servo_slow_counter = 0;
}
}
break;
case 3:
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
digitalWrite(fpins[i], ftn_queue[i].start_value);
digitalWrite(fpins[i]+1, ~ftn_queue[i].start_value);
ftn_queue[i].current_position = 0;
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
i++;
break;
case 4: // Simple Pulsed Output based on saved Rate =10*Rate in Milliseconds
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].increment = 10 * int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
}
break;
case 5: // Fade On
break;
case 6: // NEXT FEATURE to pin
break;
default:
break;
}
}
}
}
void notifyDccFunc( uint16_t Addr, DCC_ADDR_TYPE AddrType, FN_GROUP FuncGrp, uint8_t FuncState) {
#ifdef DEBUG
Serial.print("Addr= ");
Serial.println(Addr, DEC) ;
Serial.print("FuncState= ");
Serial.println(FuncState, DEC) ;
#endif
switch(FuncGrp)
{
case FN_0_4: //Function Group 1 F0 F4 F3 F2 F1
exec_function( 0, FunctionPin0, (FuncState & FN_BIT_00)>>4 );
exec_function( 1, FunctionPin1, (FuncState & FN_BIT_01));
exec_function( 2, FunctionPin2, (FuncState & FN_BIT_02)>>1);
exec_function( 3, FunctionPin3, (FuncState & FN_BIT_03)>>2 );
exec_function( 4, FunctionPin4, (FuncState & FN_BIT_04)>>3 );
break;
case FN_5_8: //Function Group 1 S FFFF == 1 F8 F7 F6 F5 & == 0 F12 F11 F10 F9 F8
exec_function( 5, FunctionPin5, (FuncState & FN_BIT_05));
exec_function( 6, FunctionPin6, (FuncState & FN_BIT_06)>>1 );
exec_function( 7, FunctionPin7, (FuncState & FN_BIT_07)>>2 );
exec_function( 8, FunctionPin8, (FuncState & FN_BIT_08)>>3 );
break;
case FN_9_12:
exec_function( 9, FunctionPin9, (FuncState & FN_BIT_09));
exec_function( 10, FunctionPin10, (FuncState & FN_BIT_10)>>1 );
exec_function( 11, FunctionPin11, (FuncState & FN_BIT_11)>>2 );
exec_function( 12, FunctionPin12, (FuncState & FN_BIT_12)>>3 );
break;
case FN_13_20: //Function Group 2 FuncState == F20-F13 Function Control
exec_function( 13, FunctionPin13, (FuncState & FN_BIT_13));
exec_function( 14, FunctionPin14, (FuncState & FN_BIT_14)>>1 );
exec_function( 15, FunctionPin15, (FuncState & FN_BIT_15)>>2 );
exec_function( 16, FunctionPin16, (FuncState & FN_BIT_16)>>3 );
break;
case FN_21_28:
break;
}
}
void exec_function (int function, int pin, int FuncState) {
switch ( Dcc.getCV( 30+(function*5)) ) { // Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
case 0: // On - Off LED
digitalWrite (pin, FuncState);
ftn_queue[function].inuse = 0;
break;
case 1: // Blinking LED
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
ftn_queue[function].start_value = 0;
digitalWrite(pin, 0);
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
} else {
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
ftn_queue[function].inuse = 0;
digitalWrite(pin, 0);
}
}
break;
case 2: // Servo
if (ftn_queue[function].inuse == 0) {
ftn_queue[function].inuse = 1;
servo[function].attach(pin);
}
if (FuncState==1) ftn_queue[function].increment = char ( Dcc.getCV( 31+(function*5)));
else ftn_queue[function].increment = - char(Dcc.getCV( 31+(function*5)));
if (FuncState==1) ftn_queue[function].stop_value = Dcc.getCV( 33+(function*5));
else ftn_queue[function].stop_value = Dcc.getCV( 32+(function*5));
break;
case 3: // Blinking LED PAIR
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
ftn_queue[function].start_value = 0;
digitalWrite(fpins[function], 0);
digitalWrite(fpins[function+1], 1);
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
} else {
if (FuncState==0) {
ftn_queue[function].inuse = 0;
digitalWrite(fpins[function], 0);
digitalWrite(fpins[function+1], 0);
}
}
break;
case 4: // Pulse Output based on Rate*10 Milliseconds
if ((ftn_queue[function].inuse==0) && (FuncState==1)) { //First Turn On Detected
digitalWrite(fpins[function], 1);
delay (10*ftn_queue[function].increment);
digitalWrite(fpins[function], 0);
ftn_queue[function].inuse = 1; //inuse set to 1 says we already pulsed
} else
if (FuncState==0) ftn_queue[function].inuse = 0;
break;
case 5: // Fade On
#define fadedelay 24
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
for (t=0; t<ftn_queue[function].stop_value; t+=ftn_queue[function].increment) {
digitalWrite( fpins[function], 1);
delay(fadedelay*(t/(1.*ftn_queue[function].stop_value)));
digitalWrite( fpins[function], 0);
delay(fadedelay-(fadedelay*(t/(1.*ftn_queue[function].stop_value))));
}
digitalWrite( fpins[function], 1 );
} else {
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
ftn_queue[function].inuse = 0;
digitalWrite(fpins[function], 0);
}
}
break;
case 6: // Future Function
ftn_queue[function].inuse = 0;
break;
default:
ftn_queue[function].inuse = 0;
break;
}
}