503 lines
18 KiB
C++
503 lines
18 KiB
C++
// Production 17 Function DCC Decoder Dec_17LED_6Ftn.ino
|
|
// Version 6.01 Geoff Bunza 2014,2015,2016,2017,2018
|
|
// Now works with both short and long DCC Addesses
|
|
// NO LONGER REQUIRES modified software servo Lib
|
|
// Software restructuring mods added from Alex Shepherd and Franz-Peter
|
|
// With sincere thanks
|
|
|
|
// ******** UNLESS YOU WANT ALL CV'S RESET UPON EVERY POWER UP
|
|
// ******** AFTER THE INITIAL DECODER LOAD REMOVE THE "//" IN THE FOOLOWING LINE!!
|
|
//#define DECODER_LOADED
|
|
|
|
// ******** EMOVE THE "//" IN THE FOOLOWING LINE TO SEND DEBUGGING
|
|
// ******** INFO TO THE SERIAL MONITOR
|
|
#define DEBUG
|
|
#include <NmraDcc.h>
|
|
#include <SoftwareServo.h>
|
|
|
|
SoftwareServo servo[17];
|
|
#define servo_start_delay 50
|
|
#define servo_init_delay 7
|
|
#define servo_slowdown 12 //servo loop counter limit
|
|
int servo_slow_counter = 0; //servo loop counter to slowdown servo transit
|
|
|
|
int tim_delay = 500;
|
|
int numfpins = 17;
|
|
byte fpins [] = {3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
|
|
const int FunctionPin0 = 3;
|
|
const int FunctionPin1 = 4;
|
|
const int FunctionPin2 = 5;
|
|
const int FunctionPin3 = 6;
|
|
const int FunctionPin4 = 7;
|
|
|
|
const int FunctionPin5 = 8;
|
|
const int FunctionPin6 = 9;
|
|
const int FunctionPin7 = 10;
|
|
const int FunctionPin8 = 11;
|
|
|
|
const int FunctionPin9 = 12;
|
|
const int FunctionPin10 = 13;
|
|
const int FunctionPin11 = 14; //A0
|
|
const int FunctionPin12 = 15; //A1
|
|
|
|
const int FunctionPin13 = 16; //A2
|
|
const int FunctionPin14 = 17; //A3 & LOAD ACK
|
|
const int FunctionPin15 = 18; //A4
|
|
const int FunctionPin16 = 19; //A5
|
|
NmraDcc Dcc ;
|
|
DCC_MSG Packet ;
|
|
uint8_t CV_DECODER_MASTER_RESET = 120;
|
|
int t; // temp
|
|
|
|
struct QUEUE
|
|
{
|
|
int inuse;
|
|
int current_position;
|
|
int increment;
|
|
int stop_value;
|
|
int start_value;
|
|
};
|
|
QUEUE *ftn_queue = new QUEUE[16];
|
|
|
|
struct CVPair
|
|
{
|
|
uint16_t CV;
|
|
uint8_t Value;
|
|
};
|
|
|
|
#define This_Decoder_Address 24
|
|
|
|
CVPair FactoryDefaultCVs [] =
|
|
{
|
|
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, This_Decoder_Address},
|
|
|
|
// These two CVs define the Long DCC Address
|
|
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, ((This_Decoder_Address>>8)&0x7F)+192 },
|
|
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, This_Decoder_Address&0xFF },
|
|
|
|
// ONLY uncomment 1 CV_29_CONFIG line below as approprate DEFAULT IS SHORT ADDRESS
|
|
// {CV_29_CONFIG, 0}, // Short Address 14 Speed Steps
|
|
{CV_29_CONFIG, CV29_F0_LOCATION}, // Short Address 28/128 Speed Steps
|
|
// {CV_29_CONFIG, CV29_EXT_ADDRESSING | CV29_F0_LOCATION}, // Long Address 28/128 Speed Steps
|
|
{CV_DECODER_MASTER_RESET, 0},
|
|
{30, 5}, //F0 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{31, 1}, //F0 Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{32, 0}, //F0 Start Position F0=0
|
|
{33, 8}, //F0 End Position F0=1
|
|
{34, 1}, //F0 Current Position
|
|
{35, 5}, //F1 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{36, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{37, 0}, // Start Position Fx=0
|
|
{38, 8}, // End Position Fx=1
|
|
{39, 1}, // Current Position
|
|
{40, 4}, //F2 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{41, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{42, 28}, // Start Position Fx=0
|
|
{43, 140}, // End Position Fx=1
|
|
{44, 0}, // Current Position
|
|
{45, 4}, //F3 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{46, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{47, 28}, // Start Position Fx=0
|
|
{48, 140}, // End Position Fx=1
|
|
{49, 0}, // Current Position
|
|
{50, 4}, //F4 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{51, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{52, 28}, // Start Position Fx=0
|
|
{53, 140}, // End Position Fx=1
|
|
{54, 0}, // Current Position
|
|
{55, 0}, //F5 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{56, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{57, 28}, // Start Position Fx=0
|
|
{58, 140}, // End Position Fx=1
|
|
{59, 28}, // Current Position
|
|
{60, 0}, //F6 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{61, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{62, 28}, // Start Position Fx=0
|
|
{63, 140}, // End Position Fx=1
|
|
{64, 28}, // Current Position
|
|
{65, 0}, //F7 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{66, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{67, 28}, // Start Position Fx=0
|
|
{68,140}, // End Position Fx=1
|
|
{69, 28}, // Current Position
|
|
{70, 0}, //F8 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{71, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{72, 28}, // Start Position Fx=0
|
|
{73, 140}, // End Position Fx=1
|
|
{74, 28}, // Current Position
|
|
{75, 0}, //F9 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{76, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{77, 28}, // Start Position Fx=0
|
|
{78, 140}, // End Position Fx=1
|
|
{79, 28}, // Current Position
|
|
{80, 0}, //F10 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{81, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{82, 1}, // Start Position Fx=0
|
|
{83, 5}, // End Position Fx=1
|
|
{84, 1}, // Current Position
|
|
{85, 1}, //F11 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{86, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{87, 1}, // Start Position Fx=0
|
|
{88, 50}, // End Position Fx=1
|
|
{89, 1}, // Current Position
|
|
{90, 1}, //F12 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{91, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{92, 1}, // Start Position Fx=0
|
|
{93, 100}, // End Position Fx=1
|
|
{94, 1}, // Current Position
|
|
{95, 3}, //F13 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{96, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{97, 1}, // Start Position Fx=0
|
|
{98, 200}, // End Position Fx=1
|
|
{99, 2}, // Current Position
|
|
{100, 0}, //F14 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{101, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{102, 1}, // Start Position Fx=0
|
|
{103, 200}, // End Position Fx=1
|
|
{104, 1}, // Current Position
|
|
{105, 3}, //F15 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{106, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{107, 1}, // Start Position Fx=0
|
|
{108, 60}, // End Position Fx=1
|
|
{109, 1}, // Current Position
|
|
{110, 0}, //F16 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{111, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{112, 1}, // Start Position Fx=0
|
|
{113, 4}, // End Position Fx=1
|
|
{114, 1}, // Current Position
|
|
//FUTURE USE
|
|
{115, 0}, //F17 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
{116, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
|
|
{117, 28}, // Start Position Fx=0
|
|
{118, 50}, // End Position Fx=1
|
|
{119, 28}, // Current Position
|
|
};
|
|
|
|
uint8_t FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
|
|
void notifyCVResetFactoryDefault()
|
|
{
|
|
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
|
|
// to flag to the loop() function that a reset to Factory Defaults needs to be done
|
|
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
|
|
};
|
|
|
|
// NOTE: NO PROGRAMMING ACK IS SET UP TO MAXIMAIZE
|
|
// OUTPUT PINS FOR FUNCTIONS
|
|
|
|
void setup() //******************************************************
|
|
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.begin(115200);
|
|
#endif
|
|
int i;
|
|
uint8_t cv_value;
|
|
// initialize the digital pins as outputs
|
|
for (int i=0; i < numfpins; i++) {
|
|
pinMode(fpins[i], OUTPUT);
|
|
digitalWrite(fpins[i], 0);
|
|
}
|
|
for (int i=0; i < numfpins; i++) {
|
|
digitalWrite(fpins[i], 1);
|
|
delay (tim_delay/10);
|
|
}
|
|
delay( tim_delay);
|
|
for (int i=0; i < numfpins; i++) {
|
|
digitalWrite(fpins[i], 0);
|
|
delay (tim_delay/10);
|
|
}
|
|
delay( tim_delay);
|
|
|
|
// Setup which External Interrupt, the Pin it's associated with that we're using
|
|
Dcc.pin(0, 2, 0);
|
|
// Call the main DCC Init function to enable the DCC Receiver
|
|
Dcc.init( MAN_ID_DIY, 601, FLAGS_MY_ADDRESS_ONLY, 0 );
|
|
delay(800);
|
|
|
|
#if defined(DECODER_LOADED)
|
|
if ( Dcc.getCV(CV_DECODER_MASTER_RESET)== CV_DECODER_MASTER_RESET )
|
|
#endif
|
|
|
|
{
|
|
for (int j=0; j < FactoryDefaultCVIndex; j++ )
|
|
Dcc.setCV( FactoryDefaultCVs[j].CV, FactoryDefaultCVs[j].Value);
|
|
digitalWrite(fpins[14], 1);
|
|
delay (1000);
|
|
digitalWrite(fpins[14], 0);
|
|
}
|
|
|
|
for ( i=0; i < numfpins; i++) {
|
|
cv_value = Dcc.getCV( 30+(i*5)) ;
|
|
#ifdef DEBUG
|
|
Serial.print(" cv_value: ");
|
|
Serial.println(cv_value, DEC) ;
|
|
#endif
|
|
switch ( cv_value ) {
|
|
case 0: // LED on/off
|
|
ftn_queue[i].inuse = 0;
|
|
break;
|
|
case 1: // LED Blink
|
|
{
|
|
ftn_queue[i].inuse = 0;
|
|
ftn_queue[i].current_position = 0;
|
|
ftn_queue[i].start_value = 0;
|
|
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
|
|
digitalWrite(fpins[i], 0);
|
|
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) ;
|
|
}
|
|
break;
|
|
case 2: //servo
|
|
{
|
|
ftn_queue[i].current_position =int (Dcc.getCV( 34+(i*5)));
|
|
ftn_queue[i].stop_value = int (Dcc.getCV( 33+(i*5)));
|
|
ftn_queue[i].start_value = int (Dcc.getCV( 32+(i*5)));
|
|
ftn_queue[i].increment = -int (char (Dcc.getCV( 31+(i*5))));
|
|
// attaches servo on pin to the servo object
|
|
servo[i].attach(fpins[i]);
|
|
|
|
#ifdef DEBUG
|
|
Serial.print("InitServo ID= ");
|
|
Serial.println(i, DEC) ;
|
|
#endif
|
|
servo[i].write(ftn_queue[i].start_value);
|
|
for (t=0; t<servo_start_delay; t++)
|
|
{SoftwareServo::refresh();delay(servo_init_delay);}
|
|
ftn_queue[i].inuse = 0;
|
|
servo[i].detach();
|
|
}
|
|
break;
|
|
case 3: // DOUBLE ALTERNATING LED Blink
|
|
{
|
|
ftn_queue[i].inuse = 0;
|
|
ftn_queue[i].current_position = 0;
|
|
ftn_queue[i].start_value = 0;
|
|
ftn_queue[i].increment = Dcc.getCV( 31+(i*5));
|
|
digitalWrite(fpins[i], 0);
|
|
digitalWrite(fpins[i+1], 0);
|
|
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
|
|
}
|
|
break;
|
|
case 4: // Simple Pulsed Output based on saved Rate =10*Rate in Milliseconds
|
|
{
|
|
ftn_queue[i].inuse = 0;
|
|
ftn_queue[i].current_position = 0;
|
|
ftn_queue[i].increment = 10 * int (char (Dcc.getCV( 31+(i*5))));
|
|
digitalWrite(fpins[i], 0);
|
|
}
|
|
break;
|
|
case 5: // Fade On
|
|
{
|
|
ftn_queue[i].inuse = 0;
|
|
ftn_queue[i].start_value = 0;
|
|
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
|
|
digitalWrite(fpins[i], 0);
|
|
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) *10.;
|
|
}
|
|
break;
|
|
case 6: // NEXT FEATURE to pin
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void loop() //**********************************************************************
|
|
{
|
|
//MUST call the NmraDcc.process() method frequently
|
|
// from the Arduino loop() function for correct library operation
|
|
Dcc.process();
|
|
SoftwareServo::refresh();
|
|
delay(3);
|
|
for (int i=0; i < numfpins; i++) {
|
|
if (ftn_queue[i].inuse==1) {
|
|
|
|
switch (Dcc.getCV( 30+(i*5))) {
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
|
|
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
|
|
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
|
|
digitalWrite(fpins[i], ftn_queue[i].start_value);
|
|
ftn_queue[i].current_position = 0;
|
|
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
if (servo_slow_counter++ > servo_slowdown)
|
|
{
|
|
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
|
|
if (ftn_queue[i].increment > 0) {
|
|
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
|
|
ftn_queue[i].current_position = ftn_queue[i].stop_value;
|
|
ftn_queue[i].inuse = 0;
|
|
servo[i].detach();
|
|
}
|
|
}
|
|
if (ftn_queue[i].increment < 0) {
|
|
if (ftn_queue[i].current_position < ftn_queue[i].start_value) {
|
|
ftn_queue[i].current_position = ftn_queue[i].start_value;
|
|
ftn_queue[i].inuse = 0;
|
|
servo[i].detach();
|
|
}
|
|
}
|
|
servo[i].write(ftn_queue[i].current_position);
|
|
servo_slow_counter = 0;
|
|
}
|
|
}
|
|
break;
|
|
case 3:
|
|
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
|
|
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
|
|
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
|
|
digitalWrite(fpins[i], ftn_queue[i].start_value);
|
|
digitalWrite(fpins[i]+1, ~ftn_queue[i].start_value);
|
|
ftn_queue[i].current_position = 0;
|
|
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
|
|
}
|
|
i++;
|
|
break;
|
|
case 4: // Simple Pulsed Output based on saved Rate =10*Rate in Milliseconds
|
|
{
|
|
ftn_queue[i].inuse = 0;
|
|
ftn_queue[i].current_position = 0;
|
|
ftn_queue[i].increment = 10 * int (char (Dcc.getCV( 31+(i*5))));
|
|
digitalWrite(fpins[i], 0);
|
|
}
|
|
break;
|
|
case 5: // Fade On
|
|
|
|
break;
|
|
case 6: // NEXT FEATURE to pin
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void notifyDccFunc( uint16_t Addr, DCC_ADDR_TYPE AddrType, FN_GROUP FuncGrp, uint8_t FuncState) {
|
|
#ifdef DEBUG
|
|
Serial.print("Addr= ");
|
|
Serial.println(Addr, DEC) ;
|
|
Serial.print("FuncState= ");
|
|
Serial.println(FuncState, DEC) ;
|
|
#endif
|
|
switch(FuncGrp)
|
|
{
|
|
case FN_0_4: //Function Group 1 F0 F4 F3 F2 F1
|
|
exec_function( 0, FunctionPin0, (FuncState & FN_BIT_00)>>4 );
|
|
exec_function( 1, FunctionPin1, (FuncState & FN_BIT_01));
|
|
exec_function( 2, FunctionPin2, (FuncState & FN_BIT_02)>>1);
|
|
exec_function( 3, FunctionPin3, (FuncState & FN_BIT_03)>>2 );
|
|
exec_function( 4, FunctionPin4, (FuncState & FN_BIT_04)>>3 );
|
|
break;
|
|
|
|
case FN_5_8: //Function Group 1 S FFFF == 1 F8 F7 F6 F5 & == 0 F12 F11 F10 F9 F8
|
|
exec_function( 5, FunctionPin5, (FuncState & FN_BIT_05));
|
|
exec_function( 6, FunctionPin6, (FuncState & FN_BIT_06)>>1 );
|
|
exec_function( 7, FunctionPin7, (FuncState & FN_BIT_07)>>2 );
|
|
exec_function( 8, FunctionPin8, (FuncState & FN_BIT_08)>>3 );
|
|
break;
|
|
|
|
case FN_9_12:
|
|
exec_function( 9, FunctionPin9, (FuncState & FN_BIT_09));
|
|
exec_function( 10, FunctionPin10, (FuncState & FN_BIT_10)>>1 );
|
|
exec_function( 11, FunctionPin11, (FuncState & FN_BIT_11)>>2 );
|
|
exec_function( 12, FunctionPin12, (FuncState & FN_BIT_12)>>3 );
|
|
break;
|
|
|
|
case FN_13_20: //Function Group 2 FuncState == F20-F13 Function Control
|
|
exec_function( 13, FunctionPin13, (FuncState & FN_BIT_13));
|
|
exec_function( 14, FunctionPin14, (FuncState & FN_BIT_14)>>1 );
|
|
exec_function( 15, FunctionPin15, (FuncState & FN_BIT_15)>>2 );
|
|
exec_function( 16, FunctionPin16, (FuncState & FN_BIT_16)>>3 );
|
|
break;
|
|
|
|
case FN_21_28:
|
|
break;
|
|
}
|
|
}
|
|
void exec_function (int function, int pin, int FuncState) {
|
|
switch ( Dcc.getCV( 30+(function*5)) ) { // Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
|
|
case 0: // On - Off LED
|
|
digitalWrite (pin, FuncState);
|
|
ftn_queue[function].inuse = 0;
|
|
break;
|
|
case 1: // Blinking LED
|
|
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
|
|
ftn_queue[function].inuse = 1;
|
|
ftn_queue[function].start_value = 0;
|
|
digitalWrite(pin, 0);
|
|
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
|
|
} else {
|
|
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
|
|
ftn_queue[function].inuse = 0;
|
|
digitalWrite(pin, 0);
|
|
}
|
|
}
|
|
break;
|
|
case 2: // Servo
|
|
if (ftn_queue[function].inuse == 0) {
|
|
ftn_queue[function].inuse = 1;
|
|
servo[function].attach(pin);
|
|
}
|
|
if (FuncState==1) ftn_queue[function].increment = char ( Dcc.getCV( 31+(function*5)));
|
|
else ftn_queue[function].increment = - char(Dcc.getCV( 31+(function*5)));
|
|
if (FuncState==1) ftn_queue[function].stop_value = Dcc.getCV( 33+(function*5));
|
|
else ftn_queue[function].stop_value = Dcc.getCV( 32+(function*5));
|
|
break;
|
|
case 3: // Blinking LED PAIR
|
|
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
|
|
ftn_queue[function].inuse = 1;
|
|
ftn_queue[function].start_value = 0;
|
|
digitalWrite(fpins[function], 0);
|
|
digitalWrite(fpins[function+1], 1);
|
|
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
|
|
} else {
|
|
if (FuncState==0) {
|
|
ftn_queue[function].inuse = 0;
|
|
digitalWrite(fpins[function], 0);
|
|
digitalWrite(fpins[function+1], 0);
|
|
}
|
|
}
|
|
break;
|
|
case 4: // Pulse Output based on Rate*10 Milliseconds
|
|
if ((ftn_queue[function].inuse==0) && (FuncState==1)) { //First Turn On Detected
|
|
digitalWrite(fpins[function], 1);
|
|
delay (10*ftn_queue[function].increment);
|
|
digitalWrite(fpins[function], 0);
|
|
ftn_queue[function].inuse = 1; //inuse set to 1 says we already pulsed
|
|
} else
|
|
if (FuncState==0) ftn_queue[function].inuse = 0;
|
|
break;
|
|
case 5: // Fade On
|
|
#define fadedelay 24
|
|
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
|
|
ftn_queue[function].inuse = 1;
|
|
for (t=0; t<ftn_queue[function].stop_value; t+=ftn_queue[function].increment) {
|
|
digitalWrite( fpins[function], 1);
|
|
delay(fadedelay*(t/(1.*ftn_queue[function].stop_value)));
|
|
digitalWrite( fpins[function], 0);
|
|
delay(fadedelay-(fadedelay*(t/(1.*ftn_queue[function].stop_value))));
|
|
}
|
|
digitalWrite( fpins[function], 1 );
|
|
} else {
|
|
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
|
|
ftn_queue[function].inuse = 0;
|
|
digitalWrite(fpins[function], 0);
|
|
}
|
|
}
|
|
break;
|
|
case 6: // Future Function
|
|
ftn_queue[function].inuse = 0;
|
|
break;
|
|
default:
|
|
ftn_queue[function].inuse = 0;
|
|
break;
|
|
}
|
|
}
|