Delete Dec_2Mot_12LED_1Srv_6Ftn.ino

This commit is contained in:
Geoff Bunza
2018-07-31 13:12:52 -07:00
committed by GitHub
parent 90e40f8f91
commit 8574dda01c

View File

@@ -1,595 +0,0 @@
// Production 2 Motor 13 Function DCC Decoder Dec_2MotDrive_12LED_1Srv_6Ftn.ino
// Version 6.0 Geoff Bunza 2014,2015,2016,2017,2018
// Now works with both short and long DCC Addesses
// NO LONGER REQUIRES modified software servo Lib
// Software restructuring mods added from Alex Shepherd and Franz-Peter
// With sincere thanks
/*
* Motor selection is via motor select Function 13 (Motor1) and Function 14 (Motor2)
* Motor speed for each can only be changed if the corresponding Function is on
* (F13 and/or F14). Motor speed is maintained if the corresponding Motor select function
* is off. Thus, each motor can be controlled independently and run at different speeds.
* F0-F12 control LEDs on Pro Mini Digital Pins 5,6,7,8,11,12,13,14,15,16,17,18,19
* Simple speed control is made via throttle speed setting for two motors. Motor selection
* is via motor select Function 13 (Motor1) and Function 14 (Motor2). Motor speed for each
* can only be changed if the corresponding Function is on (F13 and/or F14). Motor speed is
* maintained if the corresponding motor select function is off. Thus, each motor can be
* controlled independently and run at different speeds. The other functions are configurable
* but are preset for LED on/off control.
*/
// ******** UNLESS YOU WANT ALL CV'S RESET UPON EVERY POWER UP
// ******** AFTER THE INITIAL DECODER LOAD REMOVE THE "//" IN THE FOOLOWING LINE!!
//#define DECODER_LOADED
// ******** EMOVE THE "//" IN THE FOOLOWING LINE TO SEND DEBUGGING
// ******** INFO TO THE SERIAL MONITOR
//#define DEBUG
#include <NmraDcc.h>
#include <SoftwareServo.h>
SoftwareServo servo[13];
#define servo_start_delay 50
#define servo_init_delay 7
#define servo_slowdown 12 //servo loop counter limit
int servo_slow_counter = 0; //servo loop counter to slowdown servo transit
uint8_t Motor1Speed = 0;
uint8_t Motor1ForwardDir = 1;
uint8_t Motor1MaxSpeed = 127;
uint8_t Motor2Speed = 0;
uint8_t Motor2ForwardDir = 1;
uint8_t Motor2MaxSpeed = 127;
int kickstarton = 1400; //kick start cycle on time
int kickstarttime = 5; //kick start duration on time
int fwdon = 0;
int fwdtime = 1;
int bwdon = 0;
int bwdtime = 1;
int bwdshift = 0;
int cyclewidth = 2047;
int m2h = 3; //R H Bridge //Motor1
int m2l = 4; //B H Bridge //Motor1
int m0h = 9; //R H Bridge //Motor2
int m0l = 10; //B H Bridge //Motor2
int speedup = 112; //Right track time differntial
int deltime = 1500;
int tim_delay = 80;
int numfpins = 17;
int num_active_fpins = 13;
byte fpins [] = {3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
const int FunctionPin0 = 5;
const int FunctionPin1 = 6;
const int FunctionPin2 = 7;
const int FunctionPin3 = 8;
const int FunctionPin4 = 11;
const int FunctionPin5 = 12;
const int FunctionPin6 = 13;
const int FunctionPin7 = 14; //A0
const int FunctionPin8 = 15; //A1
const int FunctionPin9 = 16; //A2
const int FunctionPin10 = 17; //A3
const int FunctionPin11 = 18; //A4
const int FunctionPin12 = 19; //A5
int Function13_value = 0;
int Function14_value = 0;
NmraDcc Dcc ;
DCC_MSG Packet ;
uint8_t CV_DECODER_MASTER_RESET = 120;
int t; // temp
struct QUEUE
{
int inuse;
int current_position;
int increment;
int stop_value;
int start_value;
};
QUEUE *ftn_queue = new QUEUE[17];
struct CVPair
{
uint16_t CV;
uint8_t Value;
};
#define This_Decoder_Address 24
CVPair FactoryDefaultCVs [] =
{
{CV_MULTIFUNCTION_PRIMARY_ADDRESS, This_Decoder_Address&0x7F },
// These two CVs define the Long DCC Address
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_MSB, ((This_Decoder_Address>>8)&0x7F)+192 },
{CV_MULTIFUNCTION_EXTENDED_ADDRESS_LSB, This_Decoder_Address&0xFF },
// ONLY uncomment 1 CV_29_CONFIG line below as approprate DEFAULT IS SHORT ADDRESS
// {CV_29_CONFIG, 0}, // Short Address 14 Speed Steps
{CV_29_CONFIG, CV29_F0_LOCATION}, // Short Address 28/128 Speed Steps
// {CV_29_CONFIG, CV29_EXT_ADDRESSING | CV29_F0_LOCATION}, // Long Address 28/128 Speed Steps
{CV_DECODER_MASTER_RESET, 0},
{30, 0}, //F0 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{31, 1}, //F0 Rate Blink=Eate,PWM=Rate,Servo=Rate
{32, 0}, //F0 Start Position F0=0
{33, 8}, //F0 End Position F0=1
{34, 1}, //F0 Current Position
{35, 0}, //F1 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{36, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{37, 0}, // Start Position Fx=0
{38, 8}, // End Position Fx=1
{39, 1}, // Current Position
{40, 0}, //F2 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{41, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{42, 28}, // Start Position Fx=0
{43, 140}, // End Position Fx=1
{44, 0}, // Current Position
{45, 0}, //F3 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{46, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{47, 28}, // Start Position Fx=0
{48, 140}, // End Position Fx=1
{49, 0}, // Current Position
{50, 0}, //F4 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{51, 10}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{52, 28}, // Start Position Fx=0
{53, 140}, // End Position Fx=1
{54, 0}, // Current Position
{55, 0}, //F5 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{56, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{57, 28}, // Start Position Fx=0
{58, 140}, // End Position Fx=1
{59, 28}, // Current Position
{60, 0}, //F6 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{61, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{62, 28}, // Start Position Fx=0
{63, 140}, // End Position Fx=1
{64, 28}, // Current Position
{65, 0}, //F7 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{66, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{67, 28}, // Start Position Fx=0
{68,140}, // End Position Fx=1
{69, 28}, // Current Position
{70, 0}, //F8 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{71, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{72, 28}, // Start Position Fx=0
{73, 140}, // End Position Fx=1
{74, 28}, // Current Position
{75, 0}, //F9 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{76, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{77, 28}, // Start Position Fx=0
{78, 140}, // End Position Fx=1
{79, 28}, // Current Position
{80, 0}, //F10 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{81, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{82, 1}, // Start Position Fx=0
{83, 5}, // End Position Fx=1
{84, 1}, // Current Position
{85, 1}, //F11 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{86, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{87, 1}, // Start Position Fx=0
{88, 5}, // End Position Fx=1
{89, 1}, // Current Position
{90, 2}, //F12 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{91, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{92, 1}, // Start Position Fx=0
{93, 10}, // End Position Fx=1
{94, 1}, // Current Position
{95, 0}, //F13 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{96, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{97, 1}, // Start Position Fx=0
{98, 6}, // End Position Fx=1
{99, 1}, // Current Position
{100, 0}, //F14 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{101, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{102, 1}, // Start Position Fx=0
{103, 6}, // End Position Fx=1
{104, 1}, // Current Position
{105, 3}, //F15 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{106, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{107, 1}, // Start Position Fx=0
{108, 10}, // End Position Fx=1
{109, 1}, // Current Position
{110, 0}, //F16 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{111, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{112, 1}, // Start Position Fx=0
{113, 10}, // End Position Fx=1
{114, 1}, // Current Position
//FUTURE USE
{115, 0}, //F17 Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
{116, 1}, // Rate Blink=Eate,PWM=Rate,Servo=Rate
{117, 28}, // Start Position Fx=0
{118, 50}, // End Position Fx=1
{119, 28}, // Current Position
};
uint8_t FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
void notifyCVResetFactoryDefault()
{
// Make FactoryDefaultCVIndex non-zero and equal to num CV's to be reset
// to flag to the loop() function that a reset to Factory Defaults needs to be done
FactoryDefaultCVIndex = sizeof(FactoryDefaultCVs)/sizeof(CVPair);
};
// NOTE: NO PROGRAMMING ACK IS SET UP TO MAXIMAIZE
// OUTPUT PINS FOR FUNCTIONS
void setup() //******************************************************
{
#ifdef DEBUG
Serial.begin(115200);
#endif
int i;
uint8_t cv_value;
// initialize the digital pins as outputs
for (int i=0; i < numfpins; i++) {
pinMode(fpins[i], OUTPUT);
digitalWrite(fpins[i], 0);
}
for (int i=8; i < numfpins; i++) {
digitalWrite(fpins[i], 1);
delay (tim_delay);
}
delay( tim_delay);
for (int i=8; i < numfpins; i++) {
digitalWrite(fpins[i], 0);
delay (tim_delay);
}
// Setup which External Interrupt, the Pin it's associated with that we're using
Dcc.pin(0, 2, 0);
// Call the main DCC Init function to enable the DCC Receiver
Dcc.init( MAN_ID_DIY, 600, FLAGS_MY_ADDRESS_ONLY, 0 );
delay(800);
#if defined(DECODER_LOADED)
if ( Dcc.getCV(CV_DECODER_MASTER_RESET)== CV_DECODER_MASTER_RESET )
#endif
{
for (int j=0; j < FactoryDefaultCVIndex; j++ )
Dcc.setCV( FactoryDefaultCVs[j].CV, FactoryDefaultCVs[j].Value);
digitalWrite(fpins[14], 1);
delay (1000);
digitalWrite(fpins[14], 0);
}
for ( i=0; i < num_active_fpins; i++) {
cv_value = Dcc.getCV( 30+(i*5)) ;
#ifdef DEBUG
Serial.print(" cv_value: ");
Serial.println(cv_value, DEC) ;
#endif
switch ( cv_value ) {
case 0: // LED on/off
ftn_queue[i].inuse = 0;
break;
case 1: // LED Blink
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) ;
}
break;
case 2: //servo
{
ftn_queue[i].current_position =int (Dcc.getCV( 34+(i*5)));
ftn_queue[i].stop_value = int (Dcc.getCV( 33+(i*5)));
ftn_queue[i].start_value = int (Dcc.getCV( 32+(i*5)));
ftn_queue[i].increment = -int (char (Dcc.getCV( 31+(i*5))));
// attaches servo on pin to the servo object
servo[i].attach(fpins[i]);
#ifdef DEBUG
Serial.print("InitServo ID= ");
Serial.println(i, DEC) ;
#endif
servo[i].write(ftn_queue[i].start_value);
for (t=0; t<servo_start_delay; t++)
{SoftwareServo::refresh();delay(servo_init_delay);}
ftn_queue[i].inuse = 0;
servo[i].detach();
}
break;
case 3: // DOUBLE ALTERNATING LED Blink
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = Dcc.getCV( 31+(i*5));
digitalWrite(fpins[i], 0);
digitalWrite(fpins[i+1], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
break;
case 4: // Simple Pulsed Output based on saved Rate =10*Rate in Milliseconds
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].increment = 10 * int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
}
break;
case 5: // Fade On
{
ftn_queue[i].inuse = 0;
ftn_queue[i].start_value = 0;
ftn_queue[i].increment = int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5))) *10.;
}
break;
case 6: // NEXT FEATURE to pin
break;
default:
break;
}
}
}
void loop() //**********************************************************************
{
//MUST call the NmraDcc.process() method frequently
// from the Arduino loop() function for correct library operation
Dcc.process();
SoftwareServo::refresh();
delay(2);
if (Motor1Speed != 0) {
if (Motor1ForwardDir == 0) gofwd1 (fwdtime, int((Motor1Speed&0x7f)*21));
else gobwd1 (bwdtime, int((Motor1Speed&0x7f)*21));
}
if (Motor2Speed != 0) {
if (Motor2ForwardDir == 0) gofwd2 (fwdtime, int((Motor2Speed&0x7f)*21));
else gobwd2 (bwdtime, int((Motor2Speed&0x7f)*21));
}
//
for (int i=0; i < num_active_fpins; i++) {
if (ftn_queue[i].inuse==1) {
switch (Dcc.getCV( 30+(i*5))) {
case 0:
break;
case 1:
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
digitalWrite(fpins[i], ftn_queue[i].start_value);
ftn_queue[i].current_position = 0;
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
break;
case 2:
{
if (servo_slow_counter++ > servo_slowdown)
{
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
if (ftn_queue[i].increment > 0) {
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].current_position = ftn_queue[i].stop_value;
ftn_queue[i].inuse = 0;
servo[i].detach();
}
}
if (ftn_queue[i].increment < 0) {
if (ftn_queue[i].current_position < ftn_queue[i].start_value) {
ftn_queue[i].current_position = ftn_queue[i].start_value;
ftn_queue[i].inuse = 0;
servo[i].detach();
}
}
servo[i].write(ftn_queue[i].current_position);
servo_slow_counter = 0;
}
}
break;
case 3:
ftn_queue[i].current_position = ftn_queue[i].current_position + ftn_queue[i].increment;
if (ftn_queue[i].current_position > ftn_queue[i].stop_value) {
ftn_queue[i].start_value = ~ftn_queue[i].start_value;
digitalWrite(fpins[i], ftn_queue[i].start_value);
digitalWrite(fpins[i]+1, ~ftn_queue[i].start_value);
ftn_queue[i].current_position = 0;
ftn_queue[i].stop_value = int(Dcc.getCV( 33+(i*5)));
}
i++;
break;
case 4: // Simple Pulsed Output based on saved Rate =10*Rate in Milliseconds
{
ftn_queue[i].inuse = 0;
ftn_queue[i].current_position = 0;
ftn_queue[i].increment = 10 * int (char (Dcc.getCV( 31+(i*5))));
digitalWrite(fpins[i], 0);
}
break;
case 5: // Fade On
break;
case 6: // NEXT FEATURE to pin
break;
default:
break;
}
}
}
}
void gofwd1(int fcnt,int fcycle) {
int icnt;
int totcycle;
icnt = 0;
while (icnt < fcnt)
{
digitalWrite(m2h, HIGH); //Motor1
delayMicroseconds(fcycle);
digitalWrite(m2h, LOW); //Motor1
delayMicroseconds(cyclewidth - fcycle);
icnt++;
}
}
void gobwd1(int bcnt,int bcycle) {
int icnt;
icnt=0;
while (icnt < bcnt)
{
digitalWrite(m2l, HIGH); //Motor1
delayMicroseconds(bcycle);
digitalWrite(m2l, LOW); //Motor1
delayMicroseconds(cyclewidth - bcycle);
icnt++;
}
}
void gofwd2(int fcnt,int fcycle) {
int icnt;
int totcycle;
icnt = 0;
while (icnt < fcnt)
{
digitalWrite(m0h, HIGH); //Motor2
delayMicroseconds(fcycle);
digitalWrite(m0h, LOW); //Motor2
delayMicroseconds(cyclewidth - fcycle);
icnt++;
}
}
void gobwd2(int bcnt,int bcycle) {
int icnt;
icnt=0;
while (icnt < bcnt)
{
digitalWrite(m0l, HIGH); //Motor2
delayMicroseconds(bcycle);
digitalWrite(m0l, LOW); //Motor2
delayMicroseconds(cyclewidth - bcycle);
icnt++;
}
}
void notifyDccSpeed( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t Speed, DCC_DIRECTION ForwardDir, DCC_SPEED_STEPS SpeedSteps ) {
if (Function13_value==1) {
Motor1Speed = Speed;
Motor1ForwardDir = ForwardDir;
}
if (Function14_value==1) {
Motor2Speed = Speed;
Motor2ForwardDir = ForwardDir;
}
}
void notifyDccFunc( uint16_t Addr, DCC_ADDR_TYPE AddrType, FN_GROUP FuncGrp, uint8_t FuncState) {
switch(FuncGrp)
{
case FN_0_4: //Function Group 1 F0 F4 F3 F2 F1
exec_function( 0, FunctionPin0, (FuncState & FN_BIT_00)>>4 );
exec_function( 1, FunctionPin1, (FuncState & FN_BIT_01));
exec_function( 2, FunctionPin2, (FuncState & FN_BIT_02)>>1);
exec_function( 3, FunctionPin3, (FuncState & FN_BIT_03)>>2 );
exec_function( 4, FunctionPin4, (FuncState & FN_BIT_04)>>3 );
break;
case FN_5_8: //Function Group 1 S FFFF == 1 F8 F7 F6 F5 & == 0 F12 F11 F10 F9 F8
exec_function( 5, FunctionPin5, (FuncState & FN_BIT_05));
exec_function( 6, FunctionPin6, (FuncState & FN_BIT_06)>>1 );
exec_function( 7, FunctionPin7, (FuncState & FN_BIT_07)>>2 );
exec_function( 8, FunctionPin8, (FuncState & FN_BIT_08)>>3 );
break;
case FN_9_12:
exec_function( 9, FunctionPin9, (FuncState & FN_BIT_09));
exec_function( 10, FunctionPin10, (FuncState & FN_BIT_10)>>1 );
exec_function( 11, FunctionPin11, (FuncState & FN_BIT_11)>>2 );
exec_function( 12, FunctionPin12, (FuncState & FN_BIT_12)>>3 );
break;
case FN_13_20: //Function Group 2 FuncState == F20-F13 Function Control
Function13_value = (FuncState & FN_BIT_13);
Function14_value = (FuncState & FN_BIT_14)>>1;
// exec_function( 15, FunctionPin15, (FuncState & FN_BIT_15)>>2 );
// exec_function( 16, FunctionPin16, (FuncState & FN_BIT_16)>>3 );
break;
case FN_21_28:
break;
}
}
void exec_function (int function, int pin, int FuncState) {
switch ( Dcc.getCV( 30+(function*5)) ) { // Config 0=On/Off,1=Blink,2=Servo,3=DBL LED Blink,4=Pulsed,5=fade
case 0: // On - Off LED
digitalWrite (pin, FuncState);
ftn_queue[function].inuse = 0;
break;
case 1: // Blinking LED
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
ftn_queue[function].start_value = 0;
digitalWrite(pin, 0);
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
} else {
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
ftn_queue[function].inuse = 0;
digitalWrite(pin, 0);
}
}
break;
case 2: // Servo
if (ftn_queue[function].inuse == 0) {
ftn_queue[function].inuse = 1;
servo[function].attach(pin);
}
if (FuncState==1) ftn_queue[function].increment = char ( Dcc.getCV( 31+(function*5)));
else ftn_queue[function].increment = - char(Dcc.getCV( 31+(function*5)));
if (FuncState==1) ftn_queue[function].stop_value = Dcc.getCV( 33+(function*5));
else ftn_queue[function].stop_value = Dcc.getCV( 32+(function*5));
break;
case 3: // Blinking LED PAIR
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
ftn_queue[function].start_value = 0;
digitalWrite(fpins[function], 0);
digitalWrite(fpins[function+1], 1);
ftn_queue[function].stop_value = int(Dcc.getCV( 33+(function*5)));
} else {
if (FuncState==0) {
ftn_queue[function].inuse = 0;
digitalWrite(fpins[function], 0);
digitalWrite(fpins[function+1], 0);
}
}
break;
case 4: // Pulse Output based on Rate*10 Milliseconds
if ((ftn_queue[function].inuse==0) && (FuncState==1)) { //First Turn On Detected
digitalWrite(fpins[function], 1);
delay (10*ftn_queue[function].increment);
digitalWrite(fpins[function], 0);
ftn_queue[function].inuse = 1; //inuse set to 1 says we already pulsed
} else
if (FuncState==0) ftn_queue[function].inuse = 0;
break;
case 5: // Fade On
#define fadedelay 24
if ((ftn_queue[function].inuse==0) && (FuncState==1)) {
ftn_queue[function].inuse = 1;
for (t=0; t<ftn_queue[function].stop_value; t+=ftn_queue[function].increment) {
digitalWrite( fpins[function], 1);
delay(fadedelay*(t/(1.*ftn_queue[function].stop_value)));
digitalWrite( fpins[function], 0);
delay(fadedelay-(fadedelay*(t/(1.*ftn_queue[function].stop_value))));
}
digitalWrite( fpins[function], 1 );
} else {
if ((ftn_queue[function].inuse==1) && (FuncState==0)) {
ftn_queue[function].inuse = 0;
digitalWrite(fpins[function], 0);
}
}
break;
case 6: // Future Function
ftn_queue[function].inuse = 0;
break;
default:
ftn_queue[function].inuse = 0;
break;
}
}