Added heaps of DEBUG PRINT to the Accessory Decoder section to follow/test the various test cases through the code and to figure out how to make this stuff work.

Added more code to make the existing supported functions to be more selective about which packet bits patterns they take notice of as it was too broad previously
Will remove some of the notifyCall-Back functions as some were not well conceived at the time and now need to go
Testing is NOT complete as there were issues in JMRI that also need to be resolved in sync with this so we're not quite there yet..
This commit is contained in:
Alex Shepherd
2017-06-08 09:58:41 +12:00
parent 0d2e8daeaf
commit 0656f58c5b
2 changed files with 229 additions and 45 deletions

View File

@@ -36,6 +36,8 @@
#include <avr/eeprom.h>
#endif
#define DEBUG_PRINT // Uncomment to print DEBUG messages
//------------------------------------------------------------------------
// DCC Receive Routine
//
@@ -230,6 +232,15 @@ typedef enum
}
DccRxWaitState ;
typedef enum
{
OPS_INS_RESERVED = 0,
OPS_INS_VERIFY_BYTE,
OPS_INS_BIT_MANIPULATION,
OPS_INS_WRITE_BYTE
}
OpsInstructionType;
struct DccRx_t
{
DccRxWaitState State ;
@@ -819,12 +830,12 @@ void processMultiFunctionMessage( uint16_t Addr, DCC_ADDR_TYPE AddrType, uint8_t
case 0b11000000: // Feature Expansion Instruction
switch(Cmd & 0b00011111)
{
case 0B00011110:
case 0b00011110:
if( notifyDccFunc )
notifyDccFunc( Addr, AddrType, FN_13_20, Data1 ) ;
break;
case 0B00011111:
case 0b00011111:
if( notifyDccFunc )
notifyDccFunc( Addr, AddrType, FN_21_28, Data1 ) ;
break;
@@ -919,6 +930,24 @@ void clearDccProcState(uint8_t inServiceMode)
memset( &DccProcState.LastMsg, 0, sizeof( DCC_MSG ) ) ;
}
#ifdef DEBUG_PRINT
void SerialPrintPacketHex(const __FlashStringHelper *strLabel, DCC_MSG * pDccMsg)
{
Serial.print( strLabel );
for( uint8_t i = 0; i < pDccMsg->Size; i++ )
{
if( pDccMsg->Data[i] <= 9)
Serial.print('0');
Serial.print( pDccMsg->Data[i], HEX );
Serial.write( ' ' );
}
Serial.println();
}
#endif
void execDccProcessor( DCC_MSG * pDccMsg )
{
if( ( pDccMsg->Data[0] == 0 ) && ( pDccMsg->Data[1] == 0 ) )
@@ -982,30 +1011,73 @@ void execDccProcessor( DCC_MSG * pDccMsg )
if( DccProcState.Flags & FLAGS_DCC_ACCESSORY_DECODER )
{
uint16_t BoardAddress ;
uint8_t OutputAddress ;
uint8_t OutputIndex ;
uint16_t Address ;
uint16_t OutputAddress ;
uint8_t TurnoutPairIndex ;
#ifdef DEBUG_PRINT
SerialPrintPacketHex(F( "execDccProcessor: Accessory Decoder Command: "), pDccMsg);
#endif
BoardAddress = ( ( (~pDccMsg->Data[1]) & 0b01110000 ) << 2 ) | ( pDccMsg->Data[0] & 0b00111111 ) ;
OutputAddress = pDccMsg->Data[1] & 0b00000111 ;
OutputIndex = OutputAddress >> 1;
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Board Addr: "));
Serial.println(BoardAddress);
#endif
// First check for Legacy Accessory Decoder Configuration Variable Access Instruction
// as it's got a different format to the others
if((pDccMsg->Size == 5) && ((pDccMsg->Data[1] & 0b10001100) == 0b00001100))
{
#ifdef DEBUG_PRINT
Serial.println(F( "execDccProcessor: Legacy Accessory Decoder CV Access Command"));
#endif
// Check if this command is for our address or the broadcast address
if((BoardAddress != getMyAddr()) && ( OutputAddress < 511 ))
{
#ifdef DEBUG_PRINT
Serial.println(F("execDccProcessor: Board Address Not Matched"));
#endif
return;
}
Address = ( ( ( BoardAddress - 1 ) << 2 ) | OutputIndex ) + 1 ;
uint16_t cvAddress = ((pDccMsg->Data[1] & 0b00000011) << 8) + pDccMsg->Data[2] + 1;
uint8_t cvValue = pDccMsg->Data[3];
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: CV: "));
Serial.print(cvAddress);
Serial.print(F(" Value: "));
Serial.println(cvValue);
#endif
if(validCV( cvAddress, 1 ))
writeCV(cvAddress, cvValue);
return;
}
TurnoutPairIndex = (pDccMsg->Data[1] & 0b00000110) >> 1;
OutputAddress = ( BoardAddress << 2 ) | TurnoutPairIndex ;
if( DccProcState.inAccDecDCCAddrNextReceivedMode)
{
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
{
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(Address % 256));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(Address / 256));
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Set Output Addr: "));
Serial.println(OutputAddress);
#endif
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(OutputAddress % 256));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(OutputAddress / 256));
if( notifyDccAccOutputAddrSet )
notifyDccAccOutputAddrSet(Address);
notifyDccAccOutputAddrSet(OutputAddress);
}
else
{
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Set Board Addr: "));
Serial.println(BoardAddress);
#endif
writeCV(CV_ACCESSORY_DECODER_ADDRESS_LSB, (uint8_t)(BoardAddress % 64));
writeCV(CV_ACCESSORY_DECODER_ADDRESS_MSB, (uint8_t)(BoardAddress / 64));
@@ -1016,45 +1088,159 @@ void execDccProcessor( DCC_MSG * pDccMsg )
DccProcState.inAccDecDCCAddrNextReceivedMode = 0; // Reset the mode now that we have set the address
}
// If we're filtering was it my board address Our or a broadcast address
// If we're filtering addresses, does the address match our address or is it a broadcast address? If NOT then return
if( DccProcState.Flags & FLAGS_MY_ADDRESS_ONLY )
{
if( ( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) && ( Address != getMyAddr() ) && ( Address < 2045 ) )
if( ( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE ) && ( OutputAddress != getMyAddr() ) && ( OutputAddress < 2045 ) )
return;
else if( ( BoardAddress != getMyAddr() ) && ( BoardAddress != 511 ) )
else if( ( BoardAddress != getMyAddr() ) && ( BoardAddress < 511 ) )
return;
#ifdef DEBUG_PRINT
Serial.println(F("execDccProcessor: Address Matched"));
#endif
}
if(pDccMsg->Data[1] & 0b10000000)
{
uint8_t direction = OutputAddress & 0x01;
if((pDccMsg->Size == 4) && ((pDccMsg->Data[1] & 0b10001001) == 1)) // Extended Accessory Decoder Control Packet Format
{
uint8_t state = pDccMsg->Data[2] & 0b00011111;
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Output Addr: "));
Serial.print(OutputAddress);
Serial.print(F(" Extended State: "));
Serial.println(state);
#endif
if( notifyDccSigOutputState )
notifyDccSigOutputState(OutputAddress, state);
}
else if(pDccMsg->Size == 3) // Basic Accessory Decoder Packet Format
{
uint8_t direction = pDccMsg->Data[1] & 0b00000001;
uint8_t outputPower = (pDccMsg->Data[1] & 0b00001000) >> 3;
if( notifyDccAccState )
notifyDccAccState( Address, BoardAddress, OutputAddress, pDccMsg->Data[1] & 0b00001000 ) ;
if( DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE )
{
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Output Addr: "));
Serial.print(OutputAddress);
Serial.print(F(" Turnout Dir: "));
Serial.print(direction);
Serial.print(F(" Output Power: "));
Serial.println(outputPower);
#endif
if( notifyDccAccTurnoutOutput )
notifyDccAccTurnoutOutput( Address, direction, outputPower );
notifyDccAccTurnoutOutput( OutputAddress, direction, outputPower );
}
else
{
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Turnout Pair Index: "));
Serial.print(TurnoutPairIndex);
Serial.print(F(" Dir: "));
Serial.print(direction);
Serial.print(F(" Output Power: "));
Serial.println(outputPower);
#endif
if( notifyDccAccTurnoutBoard )
notifyDccAccTurnoutBoard( BoardAddress, OutputIndex, direction, outputPower );
notifyDccAccTurnoutBoard( BoardAddress, TurnoutPairIndex, direction, outputPower );
}
}
else
{
uint8_t state = pDccMsg->Data[2] & 0b00011111;
if( notifyDccSigState )
notifyDccSigState( Address, OutputIndex, state ) ;
else if(pDccMsg->Size == 6) // Accessory Decoder OPS Mode Programming
{
#ifdef DEBUG_PRINT
Serial.println(F("execDccProcessor: OPS Mode CV Programming Command"));
#endif
// Check for unsupported OPS Mode Addressing mode
if(((pDccMsg->Data[1] & 0b10001001) != 1) && ((pDccMsg->Data[1] & 0b10001111) != 0x80))
{
#ifdef DEBUG_PRINT
Serial.println(F("execDccProcessor: Unsupported OPS Mode CV Addressing Mode"));
#endif
return;
}
if( notifyDccSigOutputState )
notifyDccSigOutputState(Address, state);
// Check if this command is for our address or the broadcast address
if(DccProcState.Flags & FLAGS_OUTPUT_ADDRESS_MODE)
{
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Check Output Address: "));
Serial.println(OutputAddress);
#endif
if((OutputAddress != getMyAddr()) && ( OutputAddress < 2045 ))
{
#ifdef DEBUG_PRINT
Serial.println(F("execDccProcessor: Output Address Not Matched"));
#endif
return;
}
}
else
{
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Check Board Address: "));
Serial.println(BoardAddress);
#endif
if((BoardAddress != getMyAddr()) && ( BoardAddress < 511 ))
{
#ifdef DEBUG_PRINT
Serial.println(F("execDccProcessor: Board Address Not Matched"));
#endif
return;
}
}
uint16_t cvAddress = ((pDccMsg->Data[2] & 0b00000011) << 8) + pDccMsg->Data[3] + 1;
uint8_t cvValue = pDccMsg->Data[4];
OpsInstructionType insType = (OpsInstructionType)((pDccMsg->Data[2] & 0b00001100) >> 2) ;
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: OPS Mode Instruction: "));
Serial.println(insType);
#endif
switch(insType)
{
case OPS_INS_RESERVED:
case OPS_INS_VERIFY_BYTE:
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: Unsupported OPS Mode Instruction: "));
Serial.println(insType);
#endif
break; // We only support Write Byte or Bit Manipulation
case OPS_INS_WRITE_BYTE:
#ifdef DEBUG_PRINT
Serial.print(F("execDccProcessor: CV: "));
Serial.print(cvAddress);
Serial.print(F(" Value: "));
Serial.println(cvValue);
#endif
if(validCV( cvAddress, 1 ))
writeCV(cvAddress, cvValue);
break;
// 111CDBBB
// Where BBB represents the bit position within the CV,
// D contains the value of the bit to be verified or written,
// and C describes whether the operation is a verify bit or a write bit operation.
// C = "1" WRITE BIT
// C = "0" VERIFY BIT
case OPS_INS_BIT_MANIPULATION:
// Make sure its a Write Bit Manipulation
if((cvValue & 0b00010000) && validCV(cvAddress, 1 ))
{
uint8_t currentValue = readCV(cvAddress);
uint8_t newValueMask = 1 << (cvValue & 0b00000111);
if(cvValue & 0b00001000)
writeCV(cvAddress, cvValue | newValueMask);
else
writeCV(cvAddress, cvValue & ~newValueMask);
}
break;
}
}
}
}